HomeNanotechnologyRepresenting and describing nanomaterials in predictive nanoinformatics

Representing and describing nanomaterials in predictive nanoinformatics


  • Fadeel, B. et al. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 13, 537–543 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Winkler, D. A. Role of artificial intelligence and machine learning in nanosafety. Small 16, 2001883 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Cherkasov, A. et al. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Fourches, D. et al. Quantitative nanostructure-activity relationship modeling. ACS Nano 4, 5703–5712 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Puzyn, T. et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 6, 175–178 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Jeliazkova, N. et al. Towards FAIR nanosafety data. Nat. Nanotechnol. 16, 644–654 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rybińska-Fryca, A., Mikolajczyk, A. & Puzyn, T. Structure–activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. Nanoscale 12, 20669–20676 (2020).

    Article 

    Google Scholar
     

  • Marchese Robinson, R. L. et al. How should the completeness and quality of curated nanomaterial data be evaluated? Nanoscale 8, 9919–9943 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Muratov, E. N. et al. QSAR without borders. Chem. Soc. Rev. https://doi.org/10.1039/d0cs00098a (2020).

  • Stone, V. et al. A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. Nano Today https://doi.org/10.3390/nano10102017 (2020).

  • Papadiamantis, A. G. et al. Predicting cytotoxicity of metal oxide nanoparticles using Isalos Analytics Platform. Nanomaterials 10, 2493 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Puzyn, T. et al. in Recent Advances in Qsar Studies: Methods and Applications Vol. 8 (eds. Puzyn, T. et al.) 127–176 (Springer, 2010).

  • Shoombuatong, W. et al. in Advances in QSAR Modeling (Ed. Roy, K.) 3–55 (Springer, 2017).

  • Karakus, C. O. & Winkler, D. A. Overcoming roadblocks in computational roadmaps to the future for safe nanotechnology. Nano Futures 5, 22002 (2021).

    Article 

    Google Scholar
     

  • Haase, A. & Klaessig, F. (eds) EU US roadmap nanoinformatics 2030. Zenodo https://doi.org/10.5281/zenodo.1486012 (2018).

  • Mech, A. et al. Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoxicology 13, 119–141 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F. & Praetorius, A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Regulation (EC) No 1907/2006 of the European Parliament and of the Council (EUR-Lex, 18 December 2006); https://eur-lex.europa.eu/eli/reg/2006/1907/2014-04-10

  • Commission Regulation (EU) 2018/1881 (EUR-Lex, 3 December 2018); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1881

  • Subbotina, J. & Lobaskin, V. Multiscale modeling of bio-nano interactions of zero-valent silver nanoparticles. J. Phys. Chem. B 126, 1301–1314 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Kochev, N., Jeliazkova, N. & Tsakovska, I. in Issues in Toxicology (eds. Neagu, D., Richarz, A.-N.) 69–107 (The Royal Society of Chemistry, 2020).

  • Commission Regulation (EU) 2018/1881 of 3 December 2018 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards Annexes I, III,VI, V (European Commission, 2018).

  • Guidance on Information Requirements and Chemical Safety Assessment: Appendix R.6-1 for Nanomaterials Applicable to the Guidance on QSARs and Grouping of Chemicals Version 2.0, 3 (ECHA, 2019); https://doi.org/10.2823/273911

  • Burello, E. Review of (Q)SAR models for regulatory assessment of nanomaterials risks. NanoImpact 8, 48–58 (2017).

    Article 

    Google Scholar
     

  • Lynch, I., Weiss, C. & Valsami-Jones, E. A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today 9, 266–270 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Lynch, I., Afantitis, A., Leonis, G., Melagraki, G. & Valsami-Jones, E. in Advances in QSAR modeling. Challenges and Advances in Computational Chemistry and Physics Vol. 24 (Ed. Roy, K.) 385–424 (Springer, 2017).

  • Lynch, I. & Lee, R. G. in Innovation, Technology, and Knowledge Management (eds. Murphy, F. et al.) 145–169 (Springer, 2016).

  • Mülhopt, S. et al. Characterization of nanoparticle batch-to-batch variability. Nanomaterials 8, 311 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl Acad. Sci. USA 117, 6316–6322 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kluender, E. J. et al. Catalyst discovery through megalibraries of nanomaterials. Proc. Natl Acad. Sci. USA 116, 40–45 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Toxic Substances Control Act (US EPA,1979): https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act

  • TSCA Inventory Status of Nanoscale Substances – General Approach (US EPA, 2008); https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under

  • Nano-InChI working group; https://www.inchi-trust.org/nanomaterials/

  • Lynch, I. et al. Can an InChI for nano address the need for a simplified representation of complex nanomaterials across experimental and nanoinformatics studies? Nanomaterials 10, (2020).

  • Toropova, A. P. & Toropov, A. A. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment. Sci. Total Environ. 823, 153747 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Toropov, A. A., Sizochenko, N., Toropova, A. P. & Leszczynski, J. Towards the development of global nano-quantitative structure-property relationship models: zeta potentials of metal oxide nanoparticles. Nanomaterials 8, 243 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mikolajczyk, A. et al. Nano-QSAR modeling for ecosafe design of heterogeneous TiO2-based nano-photocatalysts. Environ. Sci. Nano 5, 1150–1160 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Mikolajczyk, A. et al. A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective. Nanoscale 11, 11808–11818 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Roy, J., Ojha, P. K. & Roy, K. Risk assessment of heterogeneous TiO2-based engineered nanoparticles (NPs): a QSTR approach using simple periodic table based descriptors. Nanotoxicology 13, 701–716 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Svendsen, C. et al. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nat. Nanotechnol. 15, 731–742 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Amos, J. D. et al. The NanoInformatics Knowledge Commons: capturing spatial and temporal nanomaterial transformations in diverse systems. NanoImpact 23, 100331 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Di Cristo, L. et al. Grouping hypotheses and an integrated approach to testing and assessment of nanomaterials following oral ingestion. Nanomaterials 11, 2623 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Afantitis, A., Melagraki, G., Tsoumanis, A., Valsami-Jones, E. & Lynch, I. A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints. Nanotoxicology 12, 1148–1165 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wyrzykowska, E., Mikolajczyk, A., Sikorska, C. & Puzyn, T. Development of a novel in silico model of zeta potential for metal oxide nanoparticles: a nano-QSPR approach. Nanotechnology 27, 1–8 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mikolajczyk, A. et al. Zeta potential for metal oxide nanoparticles: a predictive model developed by a nano-quantitative structure-property relationship approach. Chem. Mater. 27, 2400–2407 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Grzelczak, M., Liz-Marzan, L. M. & Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 48, 1342–1361 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y., Zhu, S., Gu, Z., Chen, C. & Zhao, Y. Toxicity of manufactured nanomaterials. Particuology 69, 31–48 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Baer, D. R., Munusamy, P. & Thrall, B. D. Provenance information as a tool for addressing engineered nanoparticle reproducibility challenges. Biointerphases 11, 04B401 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mancardi, G. et al. Multi-scale modelling of aggregation of TiO2 nanoparticle suspensions in water. Nanomaterials 12, 217 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Alsharif, S. A., Power, D., Rouse, I. & Lobaskin, V. In silico prediction of protein adsorption energy on titanium dioxide and gold nanoparticles. Nanomaterials 10, 1967 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Rouse, I. et al. First principles characterisation of bio–nano interface. Phys. Chem. Chem. Phys. 23, 13473–13482 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rouse, I. & Lobaskin, V. A hard-sphere model of protein corona formation on spherical and cylindrical nanoparticles. Biophys. J. 120, 4457–4471 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).

    Article 

    Google Scholar
     

  • Rabanel, J.-M. et al. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? Nanoscale 11, 383–406 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Adjei, I. M., Peetla, C. & Labhasetwar, V. Heterogeneity in nanoparticles influences biodistribution and targeting. Nanomedicine 9, 267–278 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Appendix for Nanoforms Applicable to the Guidance on Registration and Substance Identification (ECHA, 2019); https://doi.org/10.2823/832485

  • Caputo, F., Clogston, J., Calzolai, L., Rösslein, M. & Prina-Mello, A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release 299, 31–43 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lundqvist, M. et al. The evolution of the protein corona around nanoparticles: A test study. ACS Nano 5, 7503–7509 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Chetwynd, A. J., Zhang, W., Thorn, J. A., Lynch, I. & Ramautar, R. The nanomaterial metabolite corona determined using a quantitative metabolomics approach: a pilot study. Small 16, 2000295 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yan, X. et al. In silico profiling nanoparticles: predictive nanomodeling using universal nanodescriptors and various machine learning approaches. Nanoscale 11, 8352–8362 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Nat. Commun. 11, 1–10 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sizochenko, N. et al. From basic physics to mechanisms of toxicity: the ‘liquid drop’ approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Nanoscale 6, 13986–13993 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Sizochenko, N., Jagiello, K., Leszczynski, J. & Puzyn, T. How the ‘liquid drop’ approach could be efficiently applied for quantitative structure-property relationship modeling of nanofluids. J. Phys. Chem. C 119, 25542–25547 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Utembe, W., Potgieter, K., Stefaniak, A. B. & Gulumian, M. Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Part. Fibre Toxicol. 12, 11 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lin, S. et al. Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. Small 9, 1776–1785 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Kokot, H. et al. Prediction of chronic inflammation for inhaled particles: the impact of material cycling and quarantining in the lung epithelium. Adv. Mater. 32, 2003913 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ellis, L.-J. A. & Lynch, I. Mechanistic insights into toxicity pathways induced by nanomaterials in Daphnia magna from analysis of the composition of the acquired protein corona. Environ. Sci. Nano 7, 3343–3359 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Smythers, A. L. & Hicks, L. M. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg. Top. Life Sci. 5, 203–220 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Jagiello, K. et al. Transcriptomics-based and AOP-informed structure-activity relationships to predict pulmonary pathology induced by multiwalled carbon nanotubes. Small 17, 2003465 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Myden, A., Hill, E. & Fowkes, A. Using adverse outcome pathways to contextualise (Q)SAR predictions for reproductive toxicity – a case study with aromatase inhibition. Reprod. Toxicol. 108, 43–55 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Ellison, C. M., Piechota, P., Madden, J. C., Enoch, S. J. & Cronin, M. T. D. Adverse outcome pathway (AOP) informed modeling of aquatic toxicology: QSARs, read-across, and interspecies verification of modes of action. Environ. Sci. Technol. 50, 3995–4007 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Seo, M., Chae, C. H., Lee, Y., Kim, H. R. & Kim, J. Novel QSAR models for molecular initiating event modeling in two intersecting adverse outcome pathways based pulmonary fibrosis prediction for biocidal mixtures. Toxics 9, 59 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Halappanavar, S. et al. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part. Fibre Toxicol. 17, 16 (2020).

    Article 

    Google Scholar
     

  • Toropova, A. P., Toropov, A. A. & Benfenati, E. QSPR as a random event: solubility of fullerenes C[60] and C[70]. Fuller. Nanotub. Carbon Nanostruct. 27, 816–821 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Toropov, A. A. & Toropova, A. P. Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions. Chemosphere 139, 18–22 (2015).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments