Groisman B, Bermejo-Sánchez E, Romitti PA, Botto LD, Feldkamp ML, Walani SR, Mastroiacovo P. Be part of world start defects day. Pediatr Res. 2019;86:3–4.
Czeizel AE, Gasztonyi Z, Kuliev A. Periconceptional clinics: a medical well being care infrastructure of recent genetics. Fetal Diagn Ther. 2005;20:515–8.
Gonzaludo N, Belmont JW, Gainullin VG, Taft JR. Estimating the burden and financial impression of pediatric geneticdisease. Genet Med. 2019;21:1781–9.
Cheng WL, Hsiao CH, Tseng HW, Lee TP. Noninvasive prenatal analysis. Taiwan J Obstet Gynecol. 2015;54:343–9.
Jauniaux E, Rodeck C. Use, dangers and problems of amniocentesis and chorionic villous sampling for prenatal analysis in early being pregnant. Early Being pregnant. 1995;1:245–52.
Tabor A, Alfirevic Z. Replace on procedure-related dangers for prenatal analysis methods. Fetal Diagn Ther. 2010;27:1–7.
Scotchman E, Chandler N, Mellis R, Chitty L. Noninvasive prenatal analysis of single-gene ailments: the following frontier. Clin Chem. 2020;66:53–60.
Seror V, Muller F, Moatti JP, Le Gales C, Boue A. Financial evaluation of maternal serum screening for Down’s syndrome utilizing human chorionic gonadotropin. Prenat Diagn. 1993;13:281–92.
Torrents-Barrena J, Piella G, Masoller N, Gratacos E, Eixarch E, Ceresa M, Ballester MAG. Segmentation and classification in MRI and US fetal imaging: Current traits and future prospects. Med Picture Anal. 2019;51:61–88.
Minear MA, Lewis C, Pradhan S, Chandrasekharan S. International views on scientific adoption of NIPT. Prenat Diagn. 2015;35:959–67.
Mavrou A, Kouvidi E, Antsaklis A, Souka A, Kolialexi A. Identification of nucleated crimson blood cells in maternal circulation: a second step in screening for fetal aneuploidies and being pregnant problems. Prenat Diagn. 2010;27:150–3.
Uitto J, Pfendner E, Jackson LG. Probing the fetal genome: progress in non-invasive prenatal analysis. Tendencies Mol Med. 2003;9:339–43.
Hatt L, Brinch M, Singh R, Moller Okay, Lauridsen RH, Schlutter JM, Uldbjerg N, Christensen B, Kolvraa S. A brand new marker set that identifies fetal cells in maternal circulation with excessive specificity. Prenat Diagn. 2014;34:1066–72.
Wang Z, Cheng L, Wei X, Cai B, Solar Y, Zhang Y, Liao L, Zhao XZ. Excessive-throughput isolation of fetal nucleated crimson blood cells by multifunctional microsphere-assisted inertial microfluidics. Biomed Microdevices. 2020;22:75–83.
Rabinowitz T, Polsky A, Golan D, Danilevsky A, Shapira G, Raff C, Basel-Salmon L, Matar RT, Shomron N. Bayesian-based noninvasive prenatal analysis of single-gene issues. Genome Res. 2019;29:428–38.
Dennis Lo YM, Chiu RWK. Noninvasive prenatal analysis of fetal chromosomal aneuploidies by maternal plasma nucleic acid evaluation. Clin Chem. 2008;54:461–6.
Norton ME, Jacobsson B, Swamy GK, Laurent LC, Ranzini AC, Brar H, Tomlinson MW, Pereira L, Spitz JL, Hollemon D, et al. Cell-free DNA evaluation for noninvasive examination of trisomy. N Engl J Med. 2015;372:1589–97.
Kinnings SL, Geis JA, Almasri E, Wang H, Guan X, McCullough RM, Bombard AT, Saldivar JS, Oeth P, Deciu C. Elements affecting ranges of circulating cell-free fetal DNA in maternal plasma and their implications for noninvasive prenatal testing. Prenat Diagn. 2015;35:816–22.
Rezaei M, Winter M, Zander-Fox D, Whitehead C, Liebelt J, Warkiani ME, Hardy T, Thierry B. A reappraisal of circulating fetal cell noninvasive prenatal testing. Tendencies Biotechnol. 2019;37:632–44.
Alberry M, Maddocks D, Jones M, Abdel Hadi M, Abdel-Fattah S, Avent N, Soothill PW. Free fetal DNA in maternal plasma in anembryonic pregnancies: affirmation that the origin is the trophoblast. Prenat Diagn. 2007;27:415–8.
Pin-Jung C, Pai-Chi T, Zhu Y, Jen Jan Y, Smalley M, Afshar Y, Li-Ching C, Pisarska MD, Hsian-Rong T. Noninvasive prenatal diagnostics: latest developments utilizing circulating fetal nucleated cells. Curr Obstet Gynecol Rep. 2019;8:1–8.
Schmorl G: Pathologisch-anatomische untersuchungen über puerperal-eklampsie. Vogel; 1893.
Simpson JL, Elias S. Isolating fetal cells from maternal blood – advances in prenatal-diagnosis via molecular know-how. JAMA-J Am Med Assoc. 1993;270:2357–61.
Choolani M, Mahyuddin AP, Hahn S. The promise of fetal cells in maternal blood. Greatest Pract Res Clin Obstet Gynaecol. 2012;26:655–67.
Bianchi DW, Flint AF, Pizzimenti MF, Knoll JH, Latt SA. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci U S A. 1990;87:3279–83.
Bianchi DW, Zickwolf GK, Yih MC, Flint AF, Geifman OH, Erikson MS, Williams JM. Erythroid-specific antibodies improve detection of fetal nucleated erythrocytes in maternal blood. Prenat Diagn. 1993;13:293–300.
Hamada H, Arinami T, Kubo T, Hamaguchi H, Iwasaki H. Fetal nucleated cells in maternal peripheral blood: frequency and relationship to gestational age. Hum Genet. 1993;91:427–32.
Cheng L, Wei X, Wang Z, Feng C, Gong Q, Fu Y, Zhao X, Zhang Y. Silica microbeads seize fetal nucleated crimson blood cells for noninvasive prenatal testing of fetal ABO genotype. Electrophoresis. 2020;41:966–72.
Kuo PL. Frequencies of fetal nucleated crimson blood cells in maternal blood throughout totally different phases of gestation. Fetal Diagn Ther. 1998;13:375–9.
Feng C, He Z, Cai B, Peng J, Tune J, Yu X, Solar Y, Yuan J, Zhao X, Zhang Y. Non-invasive prenatal analysis of chromosomal aneuploidies and microdeletion syndrome utilizing fetal nucleated crimson blood cells remoted by nanostructure microchips. Theranostics. 2018;8:1301–11.
Hermansen MC. Nucleated crimson blood cells within the fetus and new child. Arch Dis Baby Fetal Neonatal Ed. 2001;84:F211–5.
Tang Y, Tang Q, Luo H, Zhang X, Chen Q, Tang W, Wang T, Yang L, Liao H. Analysis progress in isolation and enrichment of fetal cells from maternal blood. J Chem. 2022;2022:1–8.
Jeon YJ, Kwon KH, Kim JW, Pang MG, Jung SC, Kim YJ. Comparision within the yield of fetal nucleated crimson blood cell between the first-and second-trimester utilizing double density gradient centrifugation. Korean J Obstet Gynecol. 2010;53:127–36.
Ito N, Tsukamoto Okay, Taniguchi Okay, Takahashi Okay, Okamoto A, Aoki H, Otera-Takahashi Y, Kitagawa M, Ogata-Kawata H, Morita H, et al. Isolation and characterization of fetal nucleated crimson blood cells from maternal blood as a goal for single cell sequencing-based non-invasive genetic testing. Reprod Med Biol. 2021;20:352–60.
Zheng YL, Carter NP, Value CM, Colman SM, Milton PJ, Hackett GA, Greaves MF, Ferguson-Smith MA. Prenatal analysis from maternal blood: simultaneous immunophenotyping and FISH of fetal nucleated erythrocytes remoted by detrimental magnetic cell sorting. J Med Genet. 1993;30:1051–6.
Gedanken A. Utilizing sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem. 2004;11:47–55.
Yue S, Naiqi L, Bo C, Xiaoyun W, Zixiang W, Heng C, Dongshan Z, Yuanzhen Z, Xing-Zhong Z. A biocompatible nanofibers-based microchip for isolation and nondestructive launch of fetal nucleated crimson blood cells. Adv Mater Interfaces. 2020;7(23):2001028.
Zhang Q, Zhang Okay, Guo Y, Wei X, Solar Y, Cai B, Shi Y, Du Y, Liu Y, Fan C, Zhao XZ. The isolation and evaluation of fetal nucleated crimson blood cells utilizing multifunctional microbeads with a nanostructured coating towards early noninvasive prenatal diagnostics. J Mater Chem B. 2021;9:3047–54.
Huang CE, Ma GC, Jou HJ, Lin WH, Lee DJ, Lin YS, Ginsberg NA, Chen HF, Chang FM, Chen M. Noninvasive prenatal analysis of fetal aneuploidy by circulating fetal nucleated crimson blood cells and extravillous trophoblasts utilizing silicon-based nanostructured microfluidics. Mol Cytogenet. 2017;10:44–55.
Cheung MC, Goldberg JD, Kan YW. Prenatal analysis of sickle cell anaemia and thalassaemia by evaluation of fetal cells in maternal blood. Nat Genet. 1996;14:264–8.
Chang L, Zhu X, Li R, Wu H, Chen W, Chen J, Liu H, Li S, Liu P. A novel methodology for noninvasive analysis of monogenic ailments from circulating fetal cells. Prenat Diagn. 2021;41:400–8.
Liang D, Cram DS, Tan H, Linpeng S, Liu Y, Solar H, Zhang Y, Tian F, Zhu H, Xu M, et al. Medical utility of noninvasive prenatal screening for expanded chromosome illness syndromes. Genet Med. 2019;21:1998–2006.
Beaudet AL. Utilizing fetal cells for prenatal analysis: Historical past and up to date progress. Am J Med Genet C Semin Med Genet. 2016;172:123–7.
Kitagawa M, Sugiura Okay, Omi H, Akiyama Y, Kanayama Okay, Shinya M, Tanaka T, Yura H, Sago H. New method utilizing galactose-specific lectin for isolation of fetal cells from maternal blood. Prenat Diagn. 2002;22:17–21.
Sekizawa A, Watanabe A, Kimura T, Saito H, Yanaihara T, Sato T. Prenatal analysis of the fetal RHD blood kind utilizing a single fetal nucleated erythrocyte from maternal blood. Obstet Gynecol. 1996;87:501–5.
Choolani M, O’Donoghue Okay, Talbert D, Kumar S, Roberts I, Letsky E, Bennett PR, Fisk NM. Characterization of first trimester fetal erythroblasts for non-invasive prenatal analysis. Mol Hum Reprod. 2003;9:227–35.
Samura O, Sekizawa A, Zhen DK, Falco VM, Bianchi DW. Comparability of fetal cell restoration from maternal blood utilizing a excessive density gradient for the preliminary separation step: 1.090 versus 1.119 g/ml. Prenatal Diagn. 2000;20:281–6.
Ganshirt-Ahlert D, Borjesson-Stoll R, Burschyk M, Dohr A, Garritsen HS, Helmer E, Miny P, Velasco M, Walde C, Patterson D, et al. Detection of fetal trisomies 21 and 18 from maternal blood utilizing triple gradient and magnetic cell sorting. Am J Reprod Immunol. 1993;30:194–201.
Kwon KH, Jeon YJ, Hwang HS, Lee KA, Kim YJ, Chung HW, Pang MG. A excessive yield of fetal nucleated crimson blood cells remoted utilizing optimum osmolality and a double-density gradient system. Prenat Diagn. 2007;27:1245–50.
Simard C, Cloutier M, Jobin C, Dion J, Fournier D, Neron S. Implementing a routine stream cytometry assay for nucleated crimson blood cell counts in twine blood models. Int J Lab Hematol. 2016;38:600–9.
Houyhongthong V, Nunphuak W, Sripatumtong C, Parnsamut C, Ketloy C. Automated nucleated crimson blood cell depend utilizing the Mindray BC-6800 hematology analyzer. Int J Lab Hematol. 2018;40:611–6.
Bohmer RM, Zhen D, Bianchi DW. Differential growth of fetal and grownup haemoglobin profiles in colony tradition: isolation of fetal nucleated crimson cells by two-colour fluorescence labelling. Br J Haematol. 1998;103:351–60.
Yurtcu E, Karcaaltincaba D, Kazan HH, Ozdemir H, Yirmibes Karaoguz M, Calis P, Kayhan G, Guntekin Ergun S, Percin F, Bayram M, et al. Is cervical swab an environment friendly methodology for creating a brand new noninvasive prenatal diagnostic check for numerical and structural chromosome anomalies? Turk J Med Sci. 2021;51:1043–8.
Zheng S, Tong X, Wu L, He G, Ding B, Yao L, Liu Y. A comparability of in vitro tradition of fetal nucleated erythroblasts from fetal chorionic villi and maternal peripheral blood for noninvasive prenatal analysis. Fetal Diagn Ther. 2012;32:194–200.
Fukushima A, Utsugisawa Y, Wada Y, Mizusawa N, Horiuchi S, Kagabu T. The applying of magnetic cell sorter (MACS) to detect fetal cells in maternal peripheral blood. J Obstet Gynaecol Re. 2001;27:155–62.
Nemescu D, Constantinescu D, Gorduza V, Carauleanu A, Dan BN. Comparability between paramagnetic and CD71 magnetic activated cell sorting of fetal nucleated crimson blood cells from the maternal blood. J Clin Lab Anal. 2020;34: e23420.
Babochkina T, Mergenthaler S, Lapaire O, Kiefer V, Yura H, Koike Okay, Holzgreve W, Hahn S. Analysis of a soybean lectin-based methodology for the enrichment of erythroblasts. J Histochem Cytochem. 2005;53:329–30.
Kanda E, Yura H, Kitagawa M. Practicability of prenatal testing utilizing lectin-based enrichment of fetal erythroblasts. J Obstet Gynaecol Res. 2016;42:918–26.
Takabayashi H, Kuwabara S, Ukita T, Ikawa Okay, Yamafuji Okay, Igarashi T. Growth of non-invasive fetal DNA analysis from maternal blood. Prenat Diagn. 1995;15:74–7.
Giambona A, Damiani G, Leto F, Jakil C, Renda D, Cigna V, Schillaci G, Picciotto F, Nicolaides KH, Passarello C, et al. Embryo-fetal erythroid cell choice from celomic fluid permits earlier prenatal analysis of hemoglobinopathies. Prenat Diagn. 2016;36:375–81.
Sekizawa A, Kimura T, Sasaki M, Nakamura S, Kobayashi R, Sato T. Prenatal analysis of Duchenne muscular dystrophy utilizing a single fetal nucleated erythrocyte in maternal blood. Neurology. 1996;46:1350–3.
Nagy GR, Ban Z, Sipos F, Beke A, Papp C, Papp Z. Isolation of epsilon-haemoglobin-chain constructive fetal cells with micromanipulation for prenatal analysis. Prenat Diagn. 2005;25:398–402.
Oosterwijk JC, Knepflé CF, Mesker WE, Vrolijk H, Sloos WC, Pattenier H, Ravkin I, van Ommen G-JB, Kanhai HH, Tanke HJ. Methods for rare-event detection: an method for automated fetal cell detection in maternal blood. Am J Human Genet. 1998;63:1783–92.
Wei X, Chen Okay, Guo S, Liu W, Zhao XZ. Rising microfluidic applied sciences for the detection of circulating tumor cells and fetal nucleated crimson blood cells. ACS Appl Bio Mater. 2021;4:1140–55.
Li R, Zhang X, Lv X, Geng L, Li Y, Qin Okay, Deng Y. Microvalve managed multi-functional microfluidic chip for divisional cell co-culture. Anal Biochem. 2017;539:48–53.
Autebert J, Coudert B, Bidard FC, Pierga JY, Descroix S, Malaquin L, Viovy JL. Microfluidic: an progressive device for environment friendly cell sorting. Strategies. 2012;57:297–307.
Chan CY, Huang P-H, Guo F, Ding X, Kapur V, Mai JD, Yuen PK, Huang TJ. Accelerating drug discovery through organs-on-chips. Lab Chip. 2013;13:4697–710.
Deng B, Tia Y, Yu X, Tune J, Guo F, Xiao Y, Zhang Z. Laminar stream mediated steady single-cell evaluation on a novel poly(dimethylsiloxane) microfluidic chip. Anal Chim Acta. 2014;820:104–11.
Guo F, French JB, Li P, Zhao H, Chan CY, Fick JR, Benkovic SJ, Huang TJ. Probing cell-cell communication with microfluidic gadgets. Lab Chip. 2013;13:3152–62.
Zhao Y, Stratton ZS, Guo F, Lapsley MI, Chan CY, Lin S-CS, Huang TJ. Optofluidic imaging: now and past. Lab Chip. 2013;13:17–24.
Guo F, Li S, Caglar MU, Mao Z, Liu W, Woodman A, Arnold JJ, Wilke CO, Huang TJ, Cameron CE. Single-cell virology: on-chip investigation of viral an infection dynamics. Cell Rep. 2017;21:1692–704.
Liu H, Wang Y, Cui Okay, Guo Y, Zhang X, Qin J. Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater. 2019;31: e1902042.
Lin DSY, Guo F, Zhang B. Modeling organ-specific vasculature with organ-on-a-chip gadgets. Nanotechnology. 2019;30: 024002.
Ao Z, Tune S, Tian C, Cai H, Li X, Miao Y, Wu Z, Krzesniak J, Ning B, Gu M, et al. Understanding immune-driven mind ageing by human mind organoid microphysiological evaluation platform. Adv Sci (Weinh). 2022;9: e2200475.
Ao Z, Cai H, Wu Z, Hu L, Li X, Kaurich C, Gu M, Cheng L, Lu X, Guo F. Analysis of most cancers immunotherapy utilizing mini-tumor chips. Theranostics. 2022;12:3628–36.
Cai H, Ao Z, Tian C, Wu Z, Kaurich C, Chen Z, Gu M, Hohmann AG, Mackie Okay, Guo F. Engineering human spinal microphysiological methods to mannequin opioid-induced tolerance. Bioact Mater. 2023;22:482–90.
Ao Z, Cai H, Wu Z, Hu L, Nunez A, Zhou Z, Liu H, Bondesson M, Lu X, Lu X, et al. Microfluidics guided by deep studying for most cancers immunotherapy screening. Proc Natl Acad Sci U S A. 2022;119: e2214569119.
Guevara-Pantoja PE, Jimenez-Valdes RJ, Garcia-Cordero JL, Caballero-Robledo GA. Strain-actuated monolithic acrylic microfluidic valves and pumps. Lab Chip. 2018;18:662–9.
Huang M, Zheng L, Zhang H, Xue S, Ni H. Software of microvalve primarily based on laptop management in organic chemical and medical. Within the 2019 Worldwide Convention. Affiliation for Computing Equipment; 2019: 1-6
Illath Okay, Kar S, Gupta P, Shinde A, Wankhar S, Tseng F, Lim Okay, Nagai M, Santra T. Microfluidic nanomaterials: from synthesis to biomedical purposes. Biomaterials. 2022;280: 121247.
Yu ZT, Aw Yong KM, Fu J. Microfluidic blood cell sorting: now and past. Small. 2014;10:1687–703.
Byeon Y, Ki CS, Han KH. Isolation of nucleated crimson blood cells in maternal blood for non-invasive prenatal analysis. Biomed Microdevices. 2015;17:118.
Mohamed H, Turner JN, Caggana M. Biochip for separating fetal cells from maternal circulation. J Chromatogr A. 2007;1162:187–92.
Shen Y, Yalikun Y, Tanaka Y. Current advances in microfluidic cell sorting methods. Sensor Actuat B-Chem. 2019;282:268–81.
Lee D, Sukumar P, Mahyuddin A, Choolani M, Xu GL. Separation of mannequin mixtures of epsilon-globin constructive fetal nucleated crimson blood cells and anucleate erythrocytes utilizing a microfluidic machine. J Chromatogr A. 2010;1217:1862–6.
Sethu P, Sin A, Toner M. Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip. 2006;6:83–9.
Ji HM, Samper V, Chen Y, Heng CK, Lim TM, Yobas L. Silicon-based microfilters for entire blood cell separation. Biomed Microdevices. 2008;10:251–7.
Xu GL, Chan MB, Yang C, Sukumar P, Choolani M, Ying JY. Design and fabrication a microfluidic machine for fetal cells dielectrophoretic properties characterization. Int Mems Conf. 2006;2006(34):1106–11.
Blom MT, Chmela E, Oosterbroek RE, Tijssen R, van den Berg A. On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules. Anal Chem. 2003;75:6761–8.
Huang LR, Cox EC, Austin RH, Sturm JC. Steady particle separation via deterministic lateral displacement. Science. 2004;304:987–90.
Huang R, Barber TA, Schmidt MA, Tompkins RG, Toner M, Bianchi DW, Kapur R, Flejter WL. A microfluidics method for the isolation of nucleated crimson blood cells (NRBCs) from the peripheral blood of pregnant girls. Prenat Diagn. 2008;28:892–9.
Medoro G, Manaresi N, Leonardi A, Altomare L, Tartagni M, Guerrieri R. A lab-on-a-chip for cell detection and manipulation. IEEE Sens J. 2003;3:317–25.
Borgatti M, Altomare L, Abonnec M, Fabbri E, Manaresi N, Medoro G, Romani A, Tartagni M, Nastruzzi C, Di Croce S, et al. Dielectrophoresis-based “Lab-on-a-chip” gadgets for programmable binding of microspheres to focus on cells. Int J Oncol. 2005;27:1559–66.
Yu CH, Wang H, Wang Y, Cui NX, Zhao X, Rong L, Yi ZC. Protease sensitivity and redistribution of CD71 and glycophorin A on K562 cells. Cell Mol Biol (Noisy-le-grand). 2017;63:40–5.
Ding X, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F, Huang TJ. Floor acoustic wave microfluidics. Lab Chip. 2013;13:3626–49.
Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J, Huang TJ. Acoustic tweezers for the life sciences. Nat Strategies. 2018;15:1021–8.
Yue W, Zheng A, Bin C, Maram M, Maria B, Xiongbin L, Feng G. Acoustic meeting of cell spheroids in disposable capillaries. Nanotechnology. 2018;29:504006.
Zhang SP, Lata J, Chen C, Mai J, Guo F, Tian Z, Ren L, Mao Z, Huang PH, Li P, et al. Digital acoustofluidics allows contactless and programmable liquid dealing with. Nat Commun. 2018;9:2928.
Chen B, Wu Y, Ao Z, Cai H, Nunez A, Liu Y, Foley J, Nephew Okay, Lu X, Guo F. Excessive-throughput acoustofluidic fabrication of tumor spheroids. Lab Chip. 2019;19:1755–63.
Chen Okay, Sui C, Wu Y, Ao Z, Guo SS, Guo F. A digital acoustofluidic machine for on-demand and oil-free droplet technology. Nanotechnology. 2019;30: 084001.
Wu Z, Cai H, Ao Z, Nunez A, Liu H, Bondesson M, Guo S, Guo F. A digital acoustofluidic pump powered by localized fluid-substrate interactions. Anal Chem. 2019;91:7097–103.
Ao Z, Cai H, Wu Z, Johnathon J, Wang H, Mackie Okay, Guo FJB. Controllable fusion of human mind organoids utilizing acoustofluidics. Lab Chip. 2020;21:688–99.
Cai H, Ao Z, Hu L, Moon Y, Wu Z, Lu HC, Kim J, Guo F. Acoustofluidic meeting of 3D neurospheroids to mannequin Alzheimer’s illness. Analyst. 2020;145:6243–53.
Cai H, Ao Z, Wu Z, Nunez A, Jiang L, Carpenter RL, Nephew KP, Guo F. Profiling cell-matrix adhesion utilizing digitalized acoustic streaming. Anal Chem. 2020;92:2283–90.
Cai H, Wu Z, Ao Z, Nunez A, Chen B, Jiang L, Bondesson M, Guo F. Trapping cell spheroids and organoids utilizing digital acoustofluidics. Biofabrication. 2020;12: 035025.
Cai HW, Ao Z, Moon Y, Wu ZH, Lu HC, Kim J, Guo F, Hu LY. Acoustofluidic meeting of 3D neurospheroids to mannequin Alzheimer’s illness. Analyst. 2020;145:6243–53.
Ao Z, Cai H, Wu Z, Ott J, Wang H, Mackie Okay, Guo F. Controllable fusion of human mind organoids utilizing acoustofluidics. Lab Chip. 2021;21:688–99.
Cai H, Ao Z, Wu Z, Tune S, Mackie Okay, Guo F. Clever acoustofluidics enabled mini-bioreactors for human mind organoids. Lab Chip. 2021;21:2194–205.
Ao Z, Wu Z, Cai H, Hu L, Li X, Kaurich C, Chang J, Gu M, Cheng L, Lu X, Guo F. Speedy profiling of tumor-immune interplay utilizing acoustically assembled patient-derived cell clusters. Adv Sci (Weinh). 2022;9: e2201478.
Zeng Q, Guo F, Yao L, Zhu HW, Zheng L, Guo ZX, Liu W, Chen Y, Guo SS, Zhao XZ. Milliseconds mixing in microfluidic channel utilizing targeted floor acoustic wave. Sens Actuators B-Chem. 2011;160:1552–6.
Chen Y, Ding X, Lin S-CS, Yang S, Huang P-H, Nama N, Zhao Y, Nawaz AA, Guo F, Wang W, et al. Tunable nanowire patterning utilizing standing floor acoustic waves. Acs Nano. 2013;7:3306–14.
Li S, Ding X, Guo F, Chen Y, Lapsley MI, Lin S-CS, Wang L, McCoy JP, Cameron CE, Huang TJ. An on-chip, multichannel droplet sorter utilizing standing floor acoustic waves. Analyt Chem. 2013;85:5468–74.
Xie Y, Zhao C, Zhao Y, Li S, Rufo J, Yang S, Guo F, Huang TJ. Optoacoustic tweezers: a programmable, localized cell concentrator primarily based on opto-thermally generated, acoustically activated, floor bubbles. Lab Chip. 2013;13:1772–9.
Li S, Guo F, Chen Y, Ding X, Li P, Wang L, Cameron CE, Huang TJ. Standing floor acoustic wave primarily based cell coculture. Anal Chem. 2014;86:9853–9.
Zhao C, Xie Y, Mao Z, Zhao Y, Rufo J, Yang S, Guo F, Mai JD, Huang TJ. Principle and experiment on particle trapping and manipulation through optothermally generated bubbles. Lab Chip. 2014;14:384–91.
Guo F, Li P, French JB, Mao Z, Zhao H, Li S, Nama N, Fick JR, Benkovic SJ, Huang TJ. Controlling cell-cell interactions utilizing floor acoustic waves. Proc Natl Acad Sci USA. 2015;112:43–8.
Guo F, Xie Y, Li S, Lata J, Ren L, Mao Z, Ren B, Wu M, Ozcelik A, Huang TJ. Reusable acoustic tweezers for disposable gadgets. Lab Chip. 2015;15:4517–23.
Guo F, Zhou W, Li P, Mao Z, Yennawar NH, French JB, Huang TJ. Exact manipulation and patterning of protein crystals for macromolecular crystallography utilizing floor acoustic waves. Small. 2015;11:2733–7.
Li S, Ding X, Mao Z, Chen Y, Nama N, Guo F, Li P, Wang L, Cameron CE, Huang TJ. Standing floor acoustic wave (SSAW)-based cell washing. Lab Chip. 2015;15:331–8.
Ren L, Chen Y, Li P, Mao Z, Huang PH, Rufo J, Guo F, Wang L, McCoy JP, Levine SJ, Huang TJ. A high-throughput acoustic cell sorter. Lab Chip. 2015;15:3870–9.
Chen Okay, Wu M, Guo F, Li P, Chan CY, Mao Z, Li S, Ren L, Zhang R, Huang TJ. Speedy formation of size-controllable multicellular spheroids through 3D acoustic tweezers. Lab Chip. 2016;16:2636–43.
Guo F, Mao Z, Chen Y, Xie Z, Lata JP, Li P, Ren L, Liu J, Yang J, Dao M. Three-dimensional manipulation of single cells utilizing floor acoustic waves. Proc Natl Acad Sci. 2016;113:1522–7.
Lata JP, Guo F, Guo J, Huang PH, Yang J, Huang TJ. Floor acoustic waves grant superior spatial management of cells embedded in hydrogel fibers. Adv Mater. 2016;28:8632–8.
Mao Z, Xie Y, Guo F, Ren L, Huang PH, Chen Y, Rufo J, Costanzo F, Huang TJ. Experimental and numerical research on standing floor acoustic wave microfluidics. Lab Chip. 2016;16:515–24.
Liu HQ, Ao Z, Cai B, Shu X, Chen KK, Rao L, Luo CL, Wang FB, Liu W, Bondesson M, et al. Measurement-amplified acoustofluidic separation of circulating tumor cells with detachable microbeads. Nano Futures. 2018;2: 025004.
Xie Y, Rufo J, Zhong R, Wealthy J, Li P, Leong KW, Huang TJ. Microfluidic isolation and enrichment of nanoparticles. ACS Nano. 2020;14:16220–40.
Xie Y, Mao Z, Bachman H, Li P, Zhang P, Ren L, Wu M, Huang TJ. Acoustic cell separation primarily based on density and mechanical properties. J Biomech Eng. 2020;142:0310051–9.
Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang PH, Truica CI, Drabick JJ, El-Deiry WS, Dao M, et al. Acoustic separation of circulating tumor cells. Proc Natl Acad Sci U S A. 2015;112:4970–5.
Ding X, Peng Z, Lin SC, Geri M, Li S, Li P, Chen Y, Dao M, Suresh S, Huang TJ. Cell separation utilizing tilted-angle standing floor acoustic waves. Proc Natl Acad Sci U S A. 2014;111:12992–7.
Wang C, Ma Y, Pei Z, Tune F, Zhong J, Wang Y, Yan X, Dai P, Jiang Y, Qiu J, et al. Sheathless acoustic primarily based stream cell sorter for enrichment of uncommon cells. Cytometry A. 2022;101:311–24.
Guo F, Ji X-H, Liu Okay, He R-X, Zhao L-B, Guo Z-X, Liu W, Guo S-S, Zhao X-Z. Droplet electrical separator microfluidic machine for cell sorting. Appl Phys Lett. 2010;96(19):193701.
Guo F, Liu Okay, Ji X-H, Ding H-J, Zhang M, Zeng Q, Liu W, Guo S-S, Zhao X-Z. Valve-based microfluidic machine for droplet on-demand operation and static assay. Appl Phys Lett. 2010;97(23):233701.
Liu Okay, Wang H, Chen Okay-J, Guo F, Lin W-Y, Chen Y-C, Phung DL, Tseng H-R, Shen CK-F. A digital microfluidic droplet generator produces self-assembled supramolecular nanoparticles for focused cell imaging. Nanotechnology. 2010;21(44):445603.
Wang H, Liu Okay, Chen Okay-J, Lu Y, Wang S, Lin W-Y, Guo F, Kamei Okay-i, Chen Y-C, Ohashi M, et al. A fast pathway towards an outstanding gene supply system: programming structural and practical range right into a supramolecular nanoparticle library. Acs Nano. 2010;4:6235–43.
Ji X-H, Cheng W, Guo F, Liu W, Guo S-S, He Z-Okay, Zhao X-Z. On-demand preparation of quantum dot-encoded microparticles utilizing a droplet microfluidic system. Lab Chip. 2011;11:2561–8.
Ji X-H, Zhang N-G, Cheng W, Guo F, Liu W, Guo S-S, He Z-Okay, Zhao X-Z. Built-in parallel microfluidic machine for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes. J Mater Chem. 2011;21:13380–7.
Luo T, Fan L, Zhu R, Solar D. Microfluidic single-cell manipulation and evaluation: strategies and purposes. Micromachines (Basel). 2019. https://doi.org/10.3390/mi10020104.
Liu Okay, Lepin EJ, Wang M-W, Guo F, Lin W-Y, Chen Y-C, Sirk SJ, Olma S, Phelps ME, Zhao X-Z, et al. Microfluidic-based (18)F-labeling of biomolecules for immuno-positron emission tomography. Mol Imaging. 2011;10:168.
Cai B, Guo F, Zhao L, He R, Chen B, He Z, Yu X, Guo S, Xiong B, Liu W, Zhao X. Disk-like hydrogel bead-based immunofluorescence staining towards identification and statement of circulating tumor cells. Microfluid Nanofluid. 2014;16:29–37.
Guo F, Lapsley MI, Nawaz AA, Zhao Y, Lin S-CS, Chen Y, Yang S, Zhao X-Z, Huang TJ. A droplet-based, optofluidic machine for high-throughput quantitative bioanalysis. Analyt Chem. 2012;84:10745–9.
Wu Z, Gong Z, Ao Z, Xu J, Cai H, Muhsen M, Heaps S, Bondesson M, Guo S, Guo F. Speedy microfluidic formation of uniform patient-derived breast tumor spheroids. ACS Appl Bio Mater. 2020;3:6273–83.
Yang S, Guo F, Kiraly B, Mao X, Lu M, Leong KW, Huang TJ. Microfluidic synthesis of multifunctional Janus particles for biomedical purposes. Lab Chip. 2012;12:2097–102.
Farahinia A, Zhang WJ, Badea I. Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: a overview. J Sci Adv Mater Gadgets. 2021;6:303–20.
Solar Y, Cai B, Wei X, Wang Z, Rao L, Meng QF, Liao Q, Liu W, Guo S, Zhao X. A valve-based microfluidic machine for on-chip single cell therapies. Electrophoresis. 2019;40:961–8.
Kim H, Kim J. A microfluidic-based dynamic microarray system with single-layer pneumatic valves for immobilization and selective retrieval of single microbeads. Microfluid Nanofluid. 2014;16:623–33.
Zhao L, Ma C, Shen S, Tian C, Xu J, Tu Q, Li T, Wang Y, Wang J. Pneumatic microfluidics-based multiplex single-cell array. Biosens Bioelectron. 2016;78:423–30.
Zheng L, Wang B, Solar Y, Dai B, Fu Y, Zhang Y, Wang Y, Yang Z, Solar Z, Zhuang S, Zhang D. An oxygen-concentration-controllable multiorgan microfluidic platform for learning hypoxia-induced lung cancer-liver metastasis and screening medicine. ACS Sensors. 2021;6:823–32.
Thurgood P, Chheang C, Needham S, Pirogova E, Peter Okay, Baratchi S, Khoshmanesh Okay. Technology of dynamic vortices in a microfluidic system incorporating stenosis barrier by tube oscillation. Lab Chip. 2022;22:1917–28.
Amini H, Lee W, Di Carlo D. Inertial microfluidic physics. Lab Chip. 2014;14:2739–61.
He Z, Guo F, Feng C, Cai B, Lata JP, He R, Huang Q, Yu X, Rao L, Liu H, et al. Fetal nucleated crimson blood cell evaluation for non-invasive prenatal diagnostics utilizing a nanostructure microchip. J Mater Chem B. 2016;5:226–35.
Zhang H, Yang Y, Li X, Shi Y, Hu B, An Y, Zhu Z, Hong G, Yang CJ. Frequency-enhanced transferrin receptor antibody-labelled microfluidic chip (FETAL-Chip) allows environment friendly enrichment of circulating nucleated crimson blood cells for non-invasive prenatal analysis. Lab Chip. 2018;18:2749–56.
Wei X, Cai B, Chen Okay, Cheng L, Zhu Y, Wang Z, Solar Y, Liu W, Guo S, Zhang Y, Zhao X. Enhanced isolation and launch of fetal nucleated crimson blood cells utilizing multifunctional nanoparticle-based microfluidic machine for non-invasive prenatal diagnostics. Sensor Actuat B-Chem. 2019;281:131–8.
Xu S, Wu L, Qin Y, Jiang Y, Solar Okay, Holcomb C, Gravett M, Vojtech L, Schiro P, Chiu D. In situsequential ensemble-decision aliquot rating isolation and fluorescence hybridization identification of uncommon cells from blood through the use of concentrated peripheral blood mononuclear cells. Anal Chem. 2021;93:3196–201.
Solar Y, Li NQ, Cai B, Wei XY, Wang ZX, Cui H, Zhao DS, Zhang YZ, Zhao XZ. A biocompatible nanofibers-based microchip for isolation and nondestructive launch of fetal nucleated crimson blood cells. Adv Mater Interfaces. 2020;7:2001028.
Dong J, Chen JF, Smalley M, Zhao M, Ke Z, Zhu Y, Tseng HR. Nanostructured substrates for detection and characterization of circulating uncommon cells: from supplies analysis to scientific purposes. Adv Mater. 2020;32: e1903663.
Hu X, Zang X, Lv Y. Detection of circulating tumor cells: advances and significant considerations. Oncol Lett. 2021;21:422–33.
Chiou A, Hinckley J, Khaitan R, Varsano N, Wang J, Malarkey H, Hernandez C, Williams R, Estroff L, Weiner S, et al. Fluorescent silica nanoparticles to label metastatic tumor cells in mineralized bone microenvironments. Small. 2021;17: e2001432.
van der Vlist EJ, Nolte-’t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles launched by cells and subsequent quantitative and qualitative evaluation by high-resolution stream cytometry. Nat Protoc. 2012;7:1311–26.
Kurdekar AD, Avinash Chunduri LA, Manohar CS, Haleyurgirisetty MK, Hewlett IK, Venkataramaniah Okay. Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early analysis of HIV an infection. Sci Adv. 2018;4:6280.
Li X, Soler M, Szydzik C, Khoshmanesh Okay, Schmidt J, Coukos G, Mitchell A, Altug H. Label-free optofluidic nanobiosensor allows real-time evaluation of single-cell cytokine secretion. Small. 2018;14: e1800698.
Huang LL, Nie W, Zhang J, Xie HY. Cell-membrane-based biomimetic methods with bioorthogonal functionalities. Acc Chem Res. 2020;53:276–87.
Chen M, Cui Y, Hao W, Fan Y, Zhang J, Liu Q, Jiang M, Yang Y, Wang Y, Gao C. Ligand-modified homologous focused most cancers cell membrane biomimetic nanostructured lipid carriers for glioma remedy. Drug Deliv. 2021;28:2241–55.
Liu H, Li Y, Solar Okay, Fan J, Zhang P, Meng J, Wang S, Jiang L. Twin-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly seize and launch most cancers cells. J Am Chem Soc. 2013;135:7603–9.
Li J, Qi C, Lian Z, Han Q, Wang X, Cai S, Yang R, Wang C. Cell-capture and launch platform primarily based on peptide-aptamer-modified nanowires. ACS Appl Mater Inter. 2016;8:2511–6.
Abdolahad M, Taghinejad M, Taghinejad H, Janmaleki M, Mohajerzadeh S. A vertically aligned carbon nanotube-based impedance sensing biosensor for fast and excessive delicate detection of most cancers cells. Lab Chip. 2012;12:1183–90.
Jeon S, Hong W, Lee ES, Cho Y. Excessive-purity isolation and restoration of circulating tumor cells utilizing conducting polymer-deposited microfluidic machine. Theranostics. 2014;4:1123–32.
Shen H, Su R, Peng J, Zhu L, Deng Okay, Niu Q, Tune Y, Yang L, Wu L, Zhu Z, Yang C. Antibody-engineered crimson blood cell interface for high-performance seize and launch of circulating tumor cells. Bioactive Mater. 2022;11:32–40.
Li R, He Y, Zhang S, Qin J, Wang J. Cell membrane-based nanoparticles: a brand new biomimetic platform for tumor analysis and remedy. Acta Pharm Sin B. 2018;8:14–22.
Chang ZM, Zhou H, Yang C, Zhang R, You Q, Yan R, Li L, Ge M, Tang Y, Dong WF, Wang Z. Biomimetic immunomagnetic gold hybrid nanoparticles coupled with inductively coupled plasma mass spectrometry for the detection of circulating tumor cells. J Mater Chem B. 2020;8:5019–25.
Wang Z, Cheng L, Solar Y, Wei X, Cai B, Liao L, Zhang Y, Zhao XZ. Enhanced isolation of fetal nucleated crimson blood cells by enythrocyte-leukocyte hybrid membrane-coated magnetic nanoparticles for noninvasive pregnant diagnostics. Anal Chem. 2021;93:1033–42.
Wang S, Wang H, Jiao J, Chen KJ, Owens GE, Kamei Okay, Solar J, Sherman DJ, Behrenbruch CP, Wu H, Tseng HR. Three-dimensional nanostructured substrates towards environment friendly seize of circulating tumor cells. Angew Chem Int Ed Engl. 2009;48:8970–3.
Solar N, Li X, Wang Z, Zhang R, Wang J, Wang Okay, Pei R. A Multiscale TiO2 nanorod array for ultrasensitive seize of circulating tumor cells. ACS Appl Mater Inter. 2016;8:12638–43.
Ma GC, Lin WH, Huang CE, Chang TY, Liu JY, Yang YJ, Lee MH, Wu WJ, Chang YS, Chen M. A Silicon-based coral-like nanostructured microfluidics to isolate uncommon cells in human circulation: validation by SK-BR-3 most cancers cell line and its utility in circulating fetal nucleated crimson blood cells. Micromachines (Basel). 2019;10:132–47.
Qiu JC, Zhao Okay, Li LL, Yu X, Guo WB, Wang S, Zhang XD, Pan CF, Wang ZL, Liu H. A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic machine for environment friendly seize of circulating tumor cells. Nano Res. 2017;10:776–84.
Zhang P, Chen L, Xu T, Liu H, Liu X, Meng J, Yang G, Jiang L, Wang S. Programmable fractal nanostructured interfaces for particular recognition and electrochemical launch of most cancers cells. Adv Mater. 2013;25:3566–70.
Dou X, Li P, Jiang S, Bayat H, Schönherr H. Bioinspired hierarchically structured surfaces for environment friendly seize and launch of circulating tumor cells. ACS Appl Mater Inter. 2017;9:8508–18.
Ding P, Wang Z, Wu Z, Zhou Y, Solar N, Pei R. Pure biointerface primarily based on most cancers cell membranes for particular seize and launch of circulating tumor cells. ACS Appl Mater Inter. 2020;12:20263–70.
Zhao Y, Li A, Jiang L, Gu Y, Liu J. Hybrid membrane-coated biomimetic nanoparticles (HM@BNPs): a multifunctional nanomaterial for biomedical purposes. Biomacromol. 2021;22:3149–67.
Parker SG, Yang Y, Ciampi S, Gupta B, Kimpton Okay, Mansfeld FM, Kavallaris M, Gaus Okay, Gooding JJ. A photoelectrochemical platform for the seize and launch of uncommon single cells. Nat Commun. 2018;9:2288.
Timilsena S, Ardsiri S, Lerdwana S, Manandhar KD, Pattanapanyasat Okay, Noulsri E. Accuracy of lymphocyte counts from UniCel DxH 800 in beta-thalassemia/HbE sufferers having numerous numbers of nucleated crimson blood cells. Asian Pac J Allergy Immunol. 2022;40:186–92.
Zhu W, Zhang XY, Marjani SL, Zhang J, Zhang W, Wu S, Pan X. Subsequent-generation molecular analysis: single-cell sequencing from bench to bedside. Cell Mol Life Sci. 2017;74:869–80.
Schuring-Blom GH, Hoovers JM, van Lith JM, Knegt AC, Leschot NJ. FISH evaluation of fetal nucleated crimson blood cells from CVS washings in circumstances of aneuploidy. Prenat Diagn. 2001;21:864–7.
Zhen DK, Wang JY, Falco VM, Weber W, Delli-Bovi L, Bianchi DW. Poly-FISH: a way of repeated hybridizations that improves cytogenetic evaluation of fetal cells in maternal blood. Prenat Diagn. 1998;18:1181–5.
Butler JM. Current developments in Y-short Tandem repeat and Y-single nucleotide polymorphism evaluation. Forensic Sci Rev. 2003;15:91–111.
Holland C, Tanevski J, Perales-Patón J, Gleixner J, Kumar M, Mereu E, Joughin B, Stegle O, Lauffenburger D, Heyn H, et al. Robustness and applicability of transcription issue and pathway evaluation instruments on single-cell RNA-seq knowledge. Genome Biol. 2020;21:36.
Dekairelle AF, Hoste B. Software of a Y-STR-pentaplex PCR (DYS19, DYS389I and II, DYS390 and DYS393) to sexual assault circumstances – ScienceDirect. Forensic Sci Int. 2001;118:122–5.
Osamu S, Satoshi S, Johnson KL, Barbara P, Steven R, Delli-Bovi LC, Bianchi DW. Prognosis of trisomy 21 in fetal nucleated erythrocytes from maternal blood by use of quick tandem repeat sequences. Clin Chem. 2001;47:1622–6.
Giambona A, Leto F, Damiani G, Jakil C, Cigna V, Schillaci G, Stampone G, Volpes A, Allegra A, Nicolaides KH, et al. Identification of embryo-fetal cells in celomic fluid utilizing morphological and short-tandem repeats evaluation. Prenat Diagn. 2016;36:973–8.
Pertl B, Yau SC, Sherlock J, Davies AF, Mathew CG, Adinolfi M. Speedy molecular methodology for prenatal detection of Down’s syndrome. Lancet. 1994;343:1197–8.
Yoon HR, Park YS, Kim YK. Speedy prenatal detection of down and Edwards syndromes by fluorescent polymerase chain response with quick tandem repeat markers. Yonsei Med J. 2002;43:557–66.
Mann Okay, Petek E, Pertl B. Prenatal detection of chromosome aneuploidy by quantitative fluorescence PCR. In: Levy B, editor. Prenat Diagn. New York: Springer; 2019. p. 139–60.
Parks M, Courtroom S, Bowns B, Cleary S, Clokie S, Hewitt J, Williams D, Cole T, MacDonald F, Griffiths M, Allen S. Non-invasive prenatal analysis of spinal muscular atrophy by relative haplotype dosage. Eur J Hum Genet. 2017;25:416–22.
Chamberlain JS, Chamberlain JR, Fenwick RG, Ward PA, Caskey CT, Dimnik LS, Bech-Hansen NT, Hoar DI, Richards S, Covone AE, et al. Prognosis of Duchenne and Becker muscular dystrophies by polymerase chain response A multicenter research. JAMA. 1992;267:2609–15.
Pertl B, Weitgasser U, Kopp S, Kroisel PM, Sherlock J, Adinolfi M. Speedy detection of trisomies 21 and 18 and sexing by quantitative fluorescent multiplex PCR. Hum Genet. 1996;98:55–9.
Bryndorf T, Kirchhoff M, Rose H, Maahr J, Gerdes T, Karhu R, Kallioniemi A, Christensen B, Lundsteen C, Philip J. Comparative genomic hybridization in scientific cytogenetics. Am J Hum Genet. 1995;57:1211–20.
Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Grey JW, Waldman F, Pinkel D. Comparative genomic hybridization for molecular cytogenetic evaluation of stable tumors. Science. 1992;258:818–21.
Levy B, Dunn TM, Kaffe S, Kardon N, Hirschhorn Okay. Medical purposes of comparative genomic hybridization. Genet Med. 1998;1:4–12.
Le Caignec C, Boceno M, Saugier-Veber P, Jacquemont S, Joubert M, David A, Frebourg T, Rival JM. Detection of genomic imbalances by array primarily based comparative genomic hybridisation in fetuses with a number of malformations. J Med Genet. 2005;42:121–8.
Cheung SW, Shaw CA, Scott DA, Patel A, Sahoo T, Bacino CA, Pursley A, Li J, Erickson R, Gropman AL, et al. Microarray-based CGH detects chromosomal mosaicism not revealed by typical cytogenetics. Am J Med Genet A. 2007;143A:1679–86.
Simovich MJ, Yatsenko SA, Kang SH, Cheung SW, Dudek ME, Pursley A, Ward PA, Patel A, Lupski JR. Prenatal analysis of a 9q34.3 microdeletion by array-CGH in a fetus with an apparently balanced translocation. Prenat Diagn. 2007;27:1112–7.
Ballif BC, Kashork CD, Saleki R, Rorem E, Sundin Okay, Bejjani BA, Shaffer LG. Detecting intercourse chromosome anomalies and customary triploidies in merchandise of conception by array-based comparative genomic hybridization. Prenat Diagn. 2006;26:333–9.
Tyreman M, Abbott KM, Willatt LR, Nash R, Lees C, Whittaker J, Simonic I. Excessive decision array evaluation: diagnosing pregnancies with irregular ultrasound findings. J Med Genet. 2009;46:531–41.
Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, Lalani SR, Graham B, Lee B, Shinawi M, et al. Recurrent reciprocal 1q21.1 deletions and duplications related to microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet. 2008;40:1466–71.
Shuster E. Microarray genetic screening: a prenatal roadblock for all times? Lancet. 2007;369:526–9.
Srebniak M, Boter M, Oudesluijs G, Joosten M, Govaerts L, Van Opstal D, Galjaard RJ. Software of SNP array for fast prenatal analysis: implementation, genetic counselling and diagnostic stream. Eur J Hum Genet. 2011;19:1230–7.
Srivastava P. Subsequent technology sequencing facilitates illness discoveries. Genetic Clin. 2016;9:21–2.
Mardis ER. Subsequent-generation DNA sequencing strategies. Annu Rev Genomics Hum Genet. 2008;9:387–402.
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary device for transcriptomics. Nat Rev Genet. 2009;10:57–63.
Mavrou A, Kouvidi E, Antsaklis A, Souka A, Kitsiou Tzeli S, Kolialexi A. Identification of nucleated crimson blood cells in maternal circulation: a second step in screening for fetal aneuploidies and being pregnant problems. Prenat Diagn. 2007;27:150–3.
Chan KC, Jiang P, Solar Okay, Cheng YK, Tong YK, Cheng SH, Wong AI, Hudecova I, Leung TY, Chiu RW, Lo YM. Second technology noninvasive fetal genome evaluation reveals de novo mutations, single-base parental inheritance, and most well-liked DNA ends. Proc Natl Acad Sci U S A. 2016;113:E8159–68.
Papasavva T, van Ijcken WF, Kockx CE, van den Hout MC, Kountouris P, Kythreotis L, Kalogirou E, Grosveld FG, Kleanthous M. Subsequent technology sequencing of SNPs for non-invasive prenatal analysis: challenges and feasibility as illustrated by an utility to beta-thalassaemia. Eur J Hum Genet. 2013;21:1403–10.
Hua R, Barrett AN, Tan TZ, Huang Z, Mahyuddin AP, Ponnusamy S, Sandhu JS, Ho SS, Chan JK, Chong S, et al. Detection of aneuploidy from single fetal nucleated crimson blood cells utilizing entire genome sequencing. Prenat Diagn. 2015;35:637–44.
Vermeesch JR, Voet T, Devriendt Okay. Prenatal and pre-implantation genetic analysis. Nat Rev Genet. 2016;17:643–56.
Yin X, Tan Okay, Vajta G, Jiang H, Tan Y, Zhang C, Chen F, Chen S, Zhang C, Pan X, et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod. 2013;88:69–75.
Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.
Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C, Lindgren A, Kirby A, Liu S, Muddukrishna B, Ohsumi TK, et al. Subsequent-generation sequencing methods allow routine detection of balanced chromosome rearrangements for scientific diagnostics and genetic analysis. Am J Hum Genet. 2011;88:469–81.
Cirulli ET, Goldstein DB. Uncovering the roles of uncommon variants in frequent illness via whole-genome sequencing. Nat Rev Genet. 2010;11:415–25.
Dewey FE, Grove ME, Pan C, Goldstein BA, Bernstein JA, Chaib H, Merker JD, Goldfeder RL, Enns GM, David SP, et al. Medical interpretation and implications of whole-genome sequencing. JAMA. 2014;311:1035–45.
Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D, et al. The mutation spectrum revealed by paired genome sequences from a lung most cancers affected person. Nature. 2010;465:473–7.
Lau TK, Jiang FM, Stevenson RJ, Lo TK, Chan LW, Chan MK, Lo PSS, Wang W, Zhang HY, Chen F, Choy KW. Secondary findings from non-invasive prenatal testing for frequent fetal aneuploidies by entire genome sequencing as a scientific service. Prenat Diagn. 2013;33:602–8.
Prognosis. ISfP, Medication. TSfMaF, Basis TPQ. Joint Place Assertion from the Worldwide Society for Prenatal Prognosis (ISPD), the Society for Maternal Fetal Medication (SMFM), and the Perinatal High quality Basis (PQF) on using genome-wide sequencing for fetal analysis. Prenat Diagn. 2018;38:6–9.
Chen F, Liu P, Gu Y, Zhu Z, Nanisetti A, Lan Z, Huang Z, Liu JS, Kang X, Deng Y, et al. Isolation and entire genome sequencing of fetal cells from maternal blood in direction of the last word non-invasive prenatal testing. Prenat Diagn. 2017;37:1311–21.
Johnston JJ, Lewis KL, Ng D, Singh LN, Wynter J, Brewer C, Brooks BP, Brownell I, Candotti F, Gonsalves SG, et al. Individualized iterative phenotyping for genome-wide evaluation of loss-of-function mutations. Am J Hum Genet. 2015;96:913–25.
Greatest S, Wou Okay, Vora N, Van der Veyver IB, Wapner R, Chitty LS. Guarantees, pitfalls and practicalities of prenatal entire exome sequencing. Prenat Diagn. 2018;38:10–9.
Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet. 2014;59:5–15.
Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, Shang L, Boisson B, Casanova JL, Abel L. Entire-genome sequencing is extra highly effective than whole-exome sequencing for detecting exome variants. P Natl Acad Sci USA. 2015;112:5473–8.