Kashyap D, Tuli HS, Yerer MB, Sharma A, Sak Ok, Srivastava S, Pandey A, Garg VK, Sethi G, Bishayee A. Pure product-based nanoformulations for most cancers remedy: Alternatives and challenges. Semin Most cancers Biol. 2021;69:5–23.
Guan X, Solar L, Shen Y, Jin F, Bo X, Zhu C, Han X, Li X, Chen Y, Xu H, Yue W. Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to restrict post-surgical most cancers recurrence and metastasis. Nat Commun. 2022;13:2834.
Dow JAT. The important roles of metallic ions in insect homeostasis and physiology. Curr Opin Insect Sci. 2017;23:43–50.
Liu Y, Wang Y, Track S, Zhang H. Most cancers therapeutic methods primarily based on metallic ions. Chem Sci. 2021;12:12234–47.
Tenneti P, Chojecki A, Knovich MA. Iron overload within the HCT affected person: a evaluation. Bone Marrow Transplant. 2021;56:1794–804.
Gumienna-Kontecka E, Nurchi VM, Szebesczyk A, Bilska P, Krzywoszynska Ok, Kozlowski H. Chelating brokers as instruments for the therapy of metallic overload. Z Anorg Allg Chem. 2013;639:1321–31.
Wang X, Chen F, Gou S. Mixture of DN604 with gemcitabine led to cell apoptosis and cell motility inhibition through p38 MAPK signaling pathway in NSCLC. Bioorg Chem. 2020;104:104234.
Yu G, Chen Z, Wu J, Tan Y. A diagnostic prediction framework on auxiliary medical system for breast most cancers in growing international locations. Knowl-Primarily based Syst. 2021;232:107459.
Pollard AC, de la Cerda J, Schuler FW, Pollard TR, Kotrotsou A, Pisaneschi F, Pagel MD. Radiometal-based PET/MRI distinction brokers for sensing tumor extracellular pH. Biosensors. 2022;12:134.
Farooq A, Sabah S, Dhou S, Alsawaftah N, Husseini G. Exogenous distinction brokers in photoacoustic imaging: an in vivo evaluation for tumor imaging. Nanomaterials. 2022;12:393.
Scott PJH. An image is price a thousand phrases: the ability of neuroimaging. ACS Chem Neurosci. 2021;12:2553–4.
Caschera L, Lazzara A, Piergallini L, Ricci D, Tuscano B, Vanzulli A. Distinction brokers in diagnostic imaging: current and future. Pharmacol Res. 2016;110:65–75.
Cormode DP, Naha PC, Fayad ZA. Nanoparticle distinction brokers for computed tomography: a concentrate on micelles. Distinction Media Mol Imaging. 2014;9:37–52.
Solar Y, Yu M, Liang S, Zhang Y, Li C, Mou T, Yang W, Zhang X, Li B, Huang C, Li F. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials. 2011;32:2999–3007.
Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based distinction agent accumulation and toxicity: an replace. Am J Neuroradiol. 2016;37:1192.
Kung C-T, Gao H, Lee C-Y, Wang Y-N, Dong W, Ko C-H, Wang G, Fu L-M. Microfluidic synthesis management know-how and its utility in drug supply, bioimaging, biosensing, environmental evaluation and cell evaluation. Chem Eng J. 2020;399:125748.
Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q. Current progress on nanomedicine-induced ferroptosis for most cancers remedy. Biomater Sci. 2021;9:5092–115.
Liu S, Li W, Dong S, Zhang F, Dong Y, Tian B, He F, Gai S, Yang P. An all-in-one theranostic nanoplatform primarily based on upconversion dendritic mesoporous silica nanocomposites for synergistic chemodynamic/photodynamic/fuel remedy. Nanoscale. 2020;12:24146–61.
Evangelopoulos M, Parodi A, Martinez JO, Tasciotti E. Tendencies in direction of biomimicry in theranostics. Nanomaterials. 2018;8:637.
Kejík Z, Kaplánek R, Masařík M, Babula P, Matkowski A, Filipenský P, Veselá Ok, Gburek J, Sýkora D, Martásek P, Jakubek M. Iron complexes of flavonoids-antioxidant capability and past. Int J Mol Sci. 2021;22:646.
Cain TJ, Smith AT. Ferric iron reductases and their contribution to unicellular ferrous iron uptake. J Inorg Biochem. 2021;218:111407.
Dixon Scott J, Lemberg Kathryn M, Lamprecht Michael R, Skouta R, Zaitsev Eleina M, Gleason Caroline E, Patel Darpan N, Bauer Andras J, Cantley Alexandra M, Yang Wan S, et al. Ferroptosis: an iron-dependent type of nonapoptotic cell dying. Cell. 2012;149:1060–72.
Wang H, Lin D, Yu Q, Li Z, Lenahan C, Dong Y, Wei Q, Shao A. A promising way forward for ferroptosis in tumor remedy. Entrance Cell Dev Biol. 2021;9:629150.
Lei G, Zhuang L, Gan B. Concentrating on ferroptosis as a vulnerability in most cancers. Nat Rev Most cancers. 2022;22:381–96.
Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomilehto J, Lip GYH, Penninger JM, Richardson DR, Tang D, Zhou H, Wang S, et al. Ferritinophagy and ferroptosis within the administration of metabolic illnesses. Tendencies Endocrinol Metab. 2021;32:444–62.
Mbah NE, Lyssiotis CA. Metabolic regulation of ferroptosis within the tumor microenvironment. J Biol Chem. 2022;298:101617.
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and function in illness. Nat Rev Mol Cell Biol. 2021;22:266–82.
Al Bratty M, Alhazmi HA, Javed SA, Rehman ZU, Najmi A, El-Sharkawy KA. Speedy screening and estimation of binding constants for interactions of Fe3+ with two metalloproteins, apotransferrin and transferrin, utilizing affinity mode of capillary electrophoresis. J Spectrosc. 2021;2021:6987454.
Kawabata H. Transferrin and transferrin receptors replace. Free Radical Biol Med. 2019;133:46–54.
Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell dying course of. Cell Res. 2016;26:1021–32.
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, Wu H, Deng W, Shen D, Tang Q. Ferritinophagy-mediated ferroptosis is concerned in sepsis-induced cardiac damage. Free Radical Biol Med. 2020;160:303–18.
Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the function of ferroptosis in most cancers. Nat Rev Clin Oncol. 2021;18:280–96.
Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in most cancers remedy: a novel strategy to reversing drug resistance. Mol Most cancers. 2022;21:47.
Cui S, Simmons G, Vale G, Deng Y, Kim J, Kim H, Zhang R, McDonald Jeffrey G, Ye J. FAF1 blocks ferroptosis by inhibiting peroxidation of polyunsaturated fatty acids. Proc Natl Acad Sci. 2022;119:e2107189119.
Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al. ACSL4 dictates ferroptosis sensitivity by shaping mobile lipid composition. Nat Chem Biol. 2017;13:91–8.
Stockwell BR. Ferroptosis: dying by lipid peroxidation. Free Radical Biol Med. 2018;120:S7.
Lane Darius JR, Metselaar B, Greenough M, Bush Ashley I, Ayton Scott J. Ferroptosis and NRF2: an rising battlefield within the neurodegeneration of Alzheimer’s illness. Essays Biochem. 2021;65:925–40.
Hirschhorn T, Stockwell BR. The event of the idea of ferroptosis. Free Radical Biol Med. 2019;133:130–43.
Li Z, Li Y, Yang Y, Gong Z, Zhu H, Qian Y. In vivo monitoring cystine/glutamate antiporter-mediated cysteine/cystine pool below ferroptosis. Anal Chim Acta. 2020;1125:66–75.
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding H-F, Zhang J, Wang H, Chen X, Yan C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Demise Differ. 2020;27:662–75.
Track X, Zhu S, Chen P, Hou W, Wen Q, Liu J, Xie Y, Liu J, Klionsky DJ, Kroemer G, et al. AMPK-Mediated BECN1 phosphorylation promotes ferroptosis by instantly blocking system Xc– exercise. Curr Biol. 2018;28:2388-2399.e2385.
Koppula P, Zhang Y, Zhuang L, Gan B. Amino acid transporter SLC7A11/xCT on the crossroads of regulating redox homeostasis and nutrient dependency of most cancers. Most cancers Commun. 2018;38:12.
Xie Y, Hou W, Track X, Yu Y, Huang J, Solar X, Kang R, Tang D. Ferroptosis: course of and performance. Cell Demise Differ. 2016;23:369–79.
Seibt TM, Proneth B, Conrad M. Position of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2018;133:144–52.
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73:2195–209.
Lu B, Xiao BC, Mei DY, Qiao JH, Bo Y. The function of ferroptosis in most cancers growth and therapy response. Entrance Pharmacol. 2017;8:992.
Liu J, Kang R, Tang D. Signaling pathways and protection mechanisms of ferroptosis. FEBS J. 2021. https://doi.org/10.1111/febs.16059.
Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, Zhou Z, Shi C, Ke C, Bregadze VI, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis remedy of orthotopic mind tumors. ACS Nano. 2018;12:11355–65.
Wan X, Track L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted cascade nanoreactor primarily based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer remedy. ACS Nano. 2020;14:11017–28.
Liang Y, Peng C, Su N, Li Q, Chen S, Wu D, Wu B, Gao Y, Xu Z, Dan Q. Tumor microenvironments self-activated cascade catalytic nanoscale metallic natural frameworks as ferroptosis inducer for radiosensitization. Chem Eng J. 2022;437:135309.
Cheng Q, Roveri A, Cozza G, Bordin L, Arnér E. Manufacturing and purification of homogenous recombinant human selenoproteins reveals a singular codon skipping occasion in E. coli and GPX4-specific affinity to bromosulfophthalein. Redox Biol. 2021;46:102070.
Kakegawa J, Ohtsuka S, Yokoyama M, Hosoi T, Ozawa Ok, Hatanaka T. Thermal proteome profiling reveals glutathione peroxidase 4 because the goal of the autophagy inducer conophylline. Mol Pharmacol. 2021;100:181.
Zheng J, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020;32:920–37.
Guan Q, Zhou LL, Dong YB. Ferroptosis in most cancers therapeutics: a supplies chemistry perspective. J Mater Chem B. 2021;9:8906–36.
Zhou L-L, Guan Q, Li W-Y, Zhang Z, Li Y-A, Dong Y-B. A ferrocene-functionalized covalent natural framework for enhancing chemodynamic remedy through redox dyshomeostasis. Small. 2021;17:2101368.
Zhou L, Chen J, Li R, Wei L, Xiong H, Wang C, Chai Ok, Chen M, Zhu Z, Yao T, et al. Steel-polyphenol-network coated prussian blue nanoparticles for synergistic ferroptosis and apoptosis through triggered GPX4 inhibition and concurrent in situ bleomycin toxification. Small. 2021;17:2103919.
Luo S, Ma D, Wei R, Yao W, Pang X, Wang Y, Xu X, Wei X, Guo Y, Jiang X, et al. A tumor microenvironment responsive nanoplatform with oxidative stress amplification for efficient MRI-based visible tumor ferroptosis. Acta Biomater. 2022;138:518–27.
Zhang Y, Li L, Li Y, Fei Y, Xue C, Yao X, Zhao Y, Wang X, Li M, Luo Z. An ROS-activatable nanoassembly remodulates tumor cell metabolism for enhanced ferroptosis remedy. Adv Healthc Mater. 2022;11:2101702.
Zuo T, Fang T, Zhang J, Yang J, Xu R, Wang Z, Deng H, Shen Q. pH-Delicate molecular-switch-containing polymer nanoparticle for breast most cancers remedy with ferritinophagy-cascade ferroptosis and tumor immune activation. Adv Healthc Mater. 2021;10:2100683.
Tu H, Tang LJ, Luo XJ, Ai KL, Peng J. Insights into the novel perform of system Xc in regulated cell dying. Eur Rev Med Pharmacol Sci. 2021;25:1650–62.
Peng W-X, Mo Y-Y. Connecting N6-methyladenosine modification to ferroptosis resistance in hepatoblastoma. Clin Transl Med. 2022;12:e820.
Liu L, He J, Solar G, Huang N, Bian Z, Xu C, Zhang Y, Cui Z, Xu W, Solar F, et al. The N6-methyladenosine modification enhances ferroptosis resistance by way of inhibiting SLC7A11 mRNA deadenylation in hepatoblastoma. Clin Transl Med. 2022;12:e778.
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in most cancers: ferroptosis, nutrient dependency, and most cancers remedy. Protein Cell. 2021;12:599–620.
Zheng J, Sato M, Mishima E, Sato H, Conrad M. Sorafenib fails to set off ferroptosis throughout a variety of most cancers cell traces. Cell Demise Dis. 2021;12:698.
Zhu T, Shi L, Yu C, Dong Y, Qiu F, Shen L, Qian Q, Zhou G, Zhu X. Ferroptosis promotes photodynamic remedy: supramolecular photosensitizer-inducer nanodrug for enhanced most cancers therapy. Theranostics. 2019;9:3293–307.
Xin H, Huang Y, Tang H, Chen Y, Xia H, Zhang F, Li B, Ping Y. Supply of a system xc− inhibitor by a redox-responsive levodopa prodrug nanoassembly for mixture ferrotherapy. J Mater Chem B. 2021;9:7172–81.
Liu X, Zhu X, Qi X, Meng X, Xu Ok. Co-Administration of iRGD with sorafenib-loaded iron-based metal-organic framework as a focused ferroptosis agent for liver most cancers remedy. Int J Nanomedicin. 2021. https://doi.org/10.2147/IJN.S292528.
Nessel I, Khashu M, Dyall SC. Results of storage practices on long-chain polyunsaturated fatty acids and lipid peroxidation of preterm system milk. J Hum Nutr Weight loss program. 2021;34:827–33.
Foret MK, Lincoln R, Carmo SD, Cuello AC, Cosa G. Connecting the “Dots”: from free radical lipid autoxidation to cell pathology and illness. Chem Rev. 2020;120:12757–87.
Zhou Z, Track J, Rui T, Yang Z, Chen X. Activatable singlet oxygen technology from lipid hydroperoxide nanoparticles for most cancers remedy. Angew Chem Int Ed Engl. 2017;129:6492–6.
Gao M, Deng J, Liu F, Fan A, Zhao Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials. 2019;223:119486.
He Y-J, Liu X-Y, Xing L, Wan X, Chang X, Jiang H-L. Fenton reaction-independent ferroptosis remedy through glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 2020;241:119911.
Wu X, Jin S, Yang Y, Lu X, Dai X, Xu Z, Zhang C, Xiang LF. Altered expression of ferroptosis markers and iron metabolism reveals a possible function of ferroptosis in vitiligo. Pigment Cell Melanoma Res. 2022;35:328–41.
Endo M. Calcium ion as a second messenger with particular reference to excitation-contraction coupling. J Pharmacol Sci. 2006;100:519–24.
Roos J, DiGregorio PJ, Yeromin AV, Ohlsen Ok, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, et al. STIM1, an important and conserved element of store-operated Ca2+ channel perform. J Cell Biol. 2005;169:435–45.
Duchen MR. Mitochondria and calcium: from cell signalling to cell dying. J Physiol. 2000;529:57–68.
Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ switch within the management of apoptosis. Oncogene. 2008;27:6407–18.
Shou H, Wu J, Tang N, Wang B. Calcification-based most cancers analysis and remedy. ChemMedChem. 2022;17:e202100339.
Yoshida M, Kondo Ok, Miyamoto N, Kawakami Y, Tangoku A. Calcification in thymomas can predict invasiveness to surrounding organs. Thoracic Most cancers. 2021;12:1857–63.
Koc U, Cam I. Radiation and oxidative stress. In: Patel VB, editor. Toxicology. Cambridge: Tutorial Press; 2021. p. 233–41.
Berridge MJ, Bootman MD, Lipp P. Calcium—a life and dying sign. Nature. 1998;395:645–8.
Ermak G, Davies KJA. Calcium and oxidative stress: from cell signaling to cell dying. Mol Immunol. 2002;38:713–21.
Bhosale G, Sharpe JA, Sundier SY, Duchen MR. Calcium signaling as a mediator of cell power demand and a set off to cell dying. Ann NY Acad Sci. 2015;1350:107–16.
Zhang M, Track R, Liu Y, Yi Z, Meng X, Zhang J, Tang Z, Yao Z, Liu Y, Liu X, Bu W. Calcium-overload-mediated tumor remedy by calcium peroxide nanoparticles. Chem. 2019;5:2171–82.
Liu B, Bian Y, Liang S, Yuan M, Dong S, He F, Gai S, Yang P, Cheng Z, Lin J. One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference remedy. ACS Nano. 2022;16:617–30.
Zheng P, Ding B, Jiang Z, Xu W, Li G, Ding J, Chen X. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell dying. Nano Lett. 2021;21:2088–93.
Tan X, Huang J, Wang Y, He S, Jia L, Zhu Y, Pu Ok, Zhang Y, Yang X. Transformable nanosensitizer with tumor microenvironment-activated sonodynamic course of and calcium launch for enhanced most cancers immunotherapy. Angew Chem Int Ed. 2021;60:14051–9.
Clapham DE. Calcium signaling. Cell. 2007;131:1047–58.
Wang Q-C, Zheng Q, Tan H, Zhang B, Li X, Yang Y, Yu J, Liu Y, Chai H, Wang X, et al. TMCO1 is an ER Ca2+ load-activated Ca2+ channel. Cell. 2016;165:1454–66.
Chanaday NL, Nosyreva E, Shin O-H, Zhang H, Aklan I, Atasoy D, Bezprozvanny I, Kavalali ET. Presynaptic store-operated Ca2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron. 2021;109:1314-1332.e1315.
Chu X, Jiang X, Liu Y, Zhai S, Jiang Y, Chen Y, Wu J, Wang Y, Wu Y, Tao X, et al. Nitric oxide modulating calcium retailer for Ca2+-initiated most cancers remedy. Adv Funct Mater. 2021;31:2008507.
Zheng S, Zhao D, Hou G, Zhao S, Zhang W, Wang X, Li L, Lin L, Tang T-S, Hu Y. iASPP suppresses Gp78-mediated TMCO1 degradation to keep up Ca2+ homeostasis and management tumor progress and drug resistance. Proc Natl Acad Sci. 2022;119:e2111380119.
Ruprecht JJ, King MS, Zögg T, Aleksandrova AA, Pardon E, Crichton PG, Steyaert J, Kunji ERS. The molecular mechanism of transport by the mitochondrial ADP/ATP service. Cell. 2019;176:435-447.e415.
Manford AG, Rodríguez-Pérez F, Shih KY, Shi Z, Berdan CA, Choe M, Titov DV, Nomura DK, Rape M. A mobile mechanism to detect and alleviate reductive stress. Cell. 2020;183:46-61.e21.
Ren T, Zhang H, Wang J, Zhu J, Jin M, Wu Y, Guo X, Ji L, Huang Q, Zhang H, et al. MCU-dependent mitochondrial Ca2+ inhibits NAD+/SIRT3/SOD2 pathway to advertise ROS manufacturing and metastasis of HCC cells. Oncogene. 2017;36:5897–909.
Wang Y-P, Sharda A, Xu S-N, van Gastel N, Man CH, Choi U, Leong WZ, Li X, Scadden DT. Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis. Cell Metab. 2021;33:1027-1041.e1028.
Bao W, Liu M, Meng J, Liu S, Wang S, Jia R, Wang Y, Ma G, Wei W, Tian Z. MOFs-based nanoagent allows twin mitochondrial injury in synergistic antitumor remedy through oxidative stress and calcium overload. Nat Commun. 2021;12:6399.
Bai S, Lan Y, Fu S, Cheng H, Lu Z, Liu G. Connecting calcium-based nanomaterials and most cancers: from analysis to remedy. Nano-Micro Letters. 2022;14:145.
Monteith GR, Prevarskaya N, Roberts-Thomson SJ. The calcium–most cancers signalling nexus. Nat Rev Most cancers. 2017;17:373–80.
Kim B-E, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 2008;4:176–85.
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, et al. Connecting copper and most cancers: from transition metallic signalling to metalloplasia. Nat Rev Most cancers. 2022;22:102–13.
Wu W, Yu L, Jiang Q, Huo M, Lin H, Wang L, Chen Y, Shi J. Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-to-toxicity transition. J Am Chem Soc. 2019;141:11531–9.
Lu X, Gao S, Lin H, Yu L, Han Y, Zhu P, Bao W, Yao H, Chen Y, Shi J. Bioinspired copper single-atom catalysts for tumor parallel catalytic remedy. Adv Mater. 2020;32:2002246.
Hao Y-N, Zhang W-X, Gao Y-R, Wei Y-N, Shu Y, Wang J-H. State-of-the-art advances of copper-based nanostructures within the enhancement of chemodynamic remedy. J Mater Chem B. 2021;9:250–66.
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented most cancers remedy. Chem Soc Rev. 2021;50:6013–41.
Wang L, Huo M, Chen Y, Shi J. Tumor microenvironment-enabled nanotherapy. Adv Healthc Mater. 2018;7:1701156.
Liu C-G, Han Y-H, Zhang J-T, Kankala RK, Wang S-B, Chen A-Z. Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic remedy. Chem Eng J. 2019;370:1188–99.
Xiao Z, Zuo W, Chen L, Wu L, Liu N, Liu J, Jin Q, Zhao Y, Zhu X. H2O2 self-supplying and GSH-depleting nanoplatform for chemodynamic remedy synergetic photothermal/chemotherapy. ACS Appl Mater Interfaces. 2021;13:43925–36.
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al. Copper induces cell dying by focusing on lipoylated TCA cycle proteins. Science. 2022;375:1254–61.
Petrocca F, Altschuler G, Tan Shen M, Mendillo Marc L, Yan H, Jerry DJ, Kung Andrew L, Conceal W, Ince Tan A, Lieberman J. A genome-wide siRNA display identifies proteasome habit as a vulnerability of basal-like triple-negative breast most cancers cells. Most cancers Cell. 2013;24:182–96.
Deshaies RJ. Proteotoxic disaster, the ubiquitin-proteasome system, and most cancers remedy. BMC Biol. 2014;12:94–94.
Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong Ok-Ok, Elledge SJ. A genome-wide RNAi display identifies a number of artificial deadly interactions with the Ras oncogene. Cell. 2009;137:835–48.
Aggarwal A, Bhatt M. Advances in therapy of Wilson illness. Tremor Different Hyperkinet Mov. 2018;8:525–525.
Guthrie LM, Soma S, Yuan S, Silva A, Zulkifli M, Snavely TC, Greene HF, Nunez E, Lynch B, Ville CD, et al. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science. 2020;368:620–5.
Soma S, Latimer AJ, Chun H, Vicary AC, Timbalia SA, Boulet A, Rahn JJ, Chan SSL, Leary SC, Kim B-E, et al. Elesclomol restores mitochondrial perform in genetic fashions of copper deficiency. Proc Natl Acad Sci. 2018;115:8161–6.
Grillo AS, SantaMaria AM, Kafina MD, Cioffi AG, Huston NC, Han M, Search engine optimisation YA, Yien YY, Nardone C, Menon AV, et al. Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science. 2017;356:608–16.
Lutsenko S. Sending copper the place it’s wanted most. Science. 2020;368:584–5.
Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang C-Y, Zhang M, Du Z, Barsoum J, Bertin J. Elesclomol induces most cancers cell apoptosis by way of oxidative stress. Mol Most cancers Ther. 2008;7:2319–27.
Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J, Beaudette-Zlatanova BC, Lu R, Blackman RK, Barsoum J, et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in most cancers cells. Free Radical Biol Med. 2012;52:2142–50.
Hasinoff BB, Yadav AA, Patel D, Wu X. The cytotoxicity of the anticancer drug elesclomol is because of oxidative stress not directly mediated by way of its advanced with Cu(II). J Inorg Biochem. 2014;137:22–30.
Tsvetkov P, Detappe A, Cai Ok, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019;15:681–9.
Carneiro BA, El-Deiry WS. Concentrating on apoptosis in most cancers remedy. Nat Rev Clin Oncol. 2020;17:395–417.
Pfeffer CM, Singh ATK. Apoptosis: a goal for anticancer remedy. Int J Mol Sci. 2018;19:448.
Yu Z, Jiang N, Su W, Zhuo Y. Necroptosis: a novel pathway in neuroinflammation. Entrance Pharmacol. 2021;12:701564–701564.
Weinlich R, Oberst A, Beere HM, Inexperienced DR. Necroptosis in growth, irritation and illness. Nat Rev Mol Cell Biol. 2017;18:127–36.
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell dying and irritation. Nat Rev Microbiol. 2009;7:99–109.
Patteson JB, Putz AT, Tao L, Simke WC, Bryant LH, Britt RD, Li B. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science. 2021;374:1005–9.
Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML. Wilson illness. Nat Rev Dis Primers. 2018;4:21.
Oliveri V. Biomedical functions of copper ionophores. Coord Chem Rev. 2020;422:213474.
Ji Y, Dai F, Zhou B. Designing salicylaldehyde isonicotinoyl hydrazones as Cu(II) ionophores with tunable chelation and launch of copper for hitting redox Achilles heel of most cancers cells. Free Radical Biol Med. 2018;129:215–26.
Tardito S, Barilli A, Bassanetti I, Tegoni M, Bussolati O, Franchi-Gazzola R, Mucchino C, Marchiò L. Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives correlates with their hydrophobicity and doesn’t require caspase activation. J Med Chem. 2012;55:10448–59.
Dai F, Yan W-J, Du Y-T, Bao X-Z, Li X-Z, Zhou B. Structural foundation, chemical driving forces and organic implications of flavones as Cu(II) ionophores. Free Radical Biol Med. 2017;108:554–63.
Cobine PA, Brady DC. Cuproptosis: mobile and molecular mechanisms underlying copper-induced cell dying. Mol Cell. 2022;82:1786–7.
Babak MV, Ahn D. Modulation of intracellular copper ranges because the mechanism of motion of anticancer copper complexes: scientific relevance. Biomedicines. 2021;9:852.
Daniel KG, Chen D, Orlu S, Cui QC, Miller FR, Dou QP. Clioquinol and pyrrolidine dithiocarbamate advanced with copper to kind proteasome inhibitors and apoptosis inducers in human breast most cancers cells. Breast Most cancers Res. 2005;7:R897.
Dedkova VP, Shvoeva OP, Grechnikov AA. Willpower of diethyldithiocarbamate within the strong section of a fibrous cation exchanger within the Cu-form utilizing diffuse reflectance spectroscopy. J Anal Chem. 2020;75:759–63.
Solak Ok, Mavi A, Yılmaz B. Disulfiram-loaded functionalized magnetic nanoparticles mixed with copper and sodium nitroprusside in breast most cancers cells. Mater Sci Eng C. 2021;119:111452.
Bakthavatsalam S, Wiangnak P, George DJ, Zhang T, Franz KJ. Dithiocarbamate prodrugs activated by prostate particular antigen to focus on prostate most cancers. Bioorg Med Chem Lett. 2020;30:127148.
Bakthavatsalam S, Sleeper M, Dharani A, George D, Zhang T, Franz Ok. Leveraging gamma-glutamyl transferase to direct cytotoxicity of copper dithiocarbamates towards prostate most cancers cells. Angew Chem Int Ed. 2018;57:12780–4.
Zhang J, Duan D, Xu J, Fang J. Redox-dependent copper service promotes mobile copper uptake and oxidative stress-mediated apoptosis of most cancers cells. ACS Appl Mater Interfaces. 2018;10:33010–21.
French FA, Freedlander BL. Carcinostatic motion of polycarbonyl compounds and their derivatives. IV. Glyoxal bis (thiosemicarbazone) and derivatives. Most cancers Res. 1958;18:1290–300.
Donnelly PS, Liddell JR, Lim S, Paterson BM, Cater MA, Savva MS, Mot AI, James JL, Trounce IA, White AR, Crouch PJ. An impaired mitochondrial electron transport chain will increase retention of the hypoxia imaging agent diacetylbis(4-methylthiosemicarbazonato)copperII. Proc Natl Acad Sci USA. 2012;109:47–52.
Cater MA, Pearson HB, Wolyniec Ok, Klaver P, Bilandzic M, Paterson BM, Bush AI, Humbert PO, La Fontaine S, Donnelly PS, Haupt Y. Rising intracellular bioavailable copper selectively targets prostate most cancers cells. ACS Chem Biol. 2013;8:1621–31.
Jansson PJ, Kalinowski DS, Lane DJR, Kovacevic Z, Seebacher NA, Fouani L, Sahni S, Merlot AM, Richardson DR. The renaissance of polypharmacology within the growth of anti-cancer therapeutics: Inhibition of the “Triad of Demise” in most cancers by Di-2-pyridylketone thiosemicarbazones. Pharmacol Res. 2015;100:255–60.
Krishan S, Sahni S, Leck LYW, Jansson PJ, Richardson DR. Regulation of autophagy and apoptosis by Dp44mT-mediated activation of AMPK in pancreatic most cancers cells. Biochim Biophys Acta Mol Foundation Dis. 2020;1866:165657.
Guo Z-L, Richardson DR, Kalinowski DS, Kovacevic Z, Tan-Un KC, Chan GC-F. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma progress in vitro and in vivo through a number of mechanisms. J Hematol Oncol. 2016;9:98.
Oliveri V, Vecchio G. 8-Hydroxyquinolines in medicinal chemistry: a structural perspective. Eur J Med Chem. 2016;120:252–74.
Gupta R, Luxami V, Paul Ok. Insights of 8-hydroxyquinolines: a novel goal in medicinal chemistry. Bioorg Chem. 2021;108:104633.
Oliveri V, Lanza V, Milardi D, Viale M, Maric I, Sgarlata C, Vecchio G. Amino- and chloro-8-hydroxyquinolines and their copper complexes as proteasome inhibitors and antiproliferative brokers. Metallomics. 2017;9:1439–46.
Jiang H, Taggart JE, Zhang X, Benbrook DM, Lind SE, Ding W-Q. Nitroxoline (8-hydroxy-5-nitroquinoline) is extra a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline). Most cancers Lett. 2011;312:11–7.
Summers KL, Dolgova NV, Gagnon KB, Sopasis GJ, James AK, Lai B, Sylvain NJ, Harris HH, Nichol HK, George GN, Pickering IJ. PBT2 acts by way of a unique mechanism of motion than different 8-hydroxyquinolines: an X-ray fluorescence imaging research. Metallomics. 2020;12:1979–94.
Summers KL, Roseman GP, Sopasis GJ, Millhauser GL, Harris HH, Pickering IJ, George GN. Copper (II) binding to PBT2 differs from that of different 8-hydroxyquinoline chelators: implications for the therapy of neurodegenerative protein misfolding illnesses. Inorg Chem. 2020;59:17519–34.
Oliveri V, Giuffrida ML, Vecchio G, Aiello C, Viale M. Gluconjugates of 8-hydroxyquinolines as potential anti-cancer prodrugs. Dalton Trans. 2012;41:4530–5.
Oliveri V, Viale M, Caron G, Aiello C, Gangemi R, Vecchio G. Glycosylated copper(ii) ionophores as prodrugs for β-glucosidase activation in focused most cancers remedy. Dalton Trans. 2013;42:2023–34.
Le Particular person A, Moissette A, Hureau M, Cornard JP, Moncomble A, Kokaislova A, Falantin C. Sorption of 3-hydroxyflavone inside channel kind zeolites: the impact of confinement on copper(ii) complexation. PCCP. 2016;18:26107–16.
Bao X-Z, Wang Q, Ren X-R, Dai F, Zhou B. A hydrogen peroxide-activated Cu(II) pro-ionophore technique for modifying naphthazarin as a promising anticancer agent with excessive selectivity for producing ROS in HepG2 cells over in L02 cells. Free Radical Biol Med. 2020;152:597–608.
Bao X-Z, Dai F, Li X-R, Zhou B. Concentrating on redox vulnerability of most cancers cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: hitting three birds with one stone. Free Radical Biol Med. 2018;124:342–52.
Dai F, Yuan C-H, Ji Y, Du Y-T, Bao X-Z, Wu L-X, Jin X-L, Zhou B. Keto-enol-based modification on piperlongumine to generate a potent Cu(II) ionophore that triggers redox imbalance and dying of HepG2 cells. Free Radical Biol Med. 2018;120:124–32.
Khorasani MY, Langari H, Sany SBT, Rezayi M, Sahebkar A. The function of curcumin and its derivatives in sensory functions. Mater Sci Eng C. 2019;103:109792.
Schrier RW. The science behind hyponatremia and its scientific manifestations. Pharmacother: J Hum Pharmacol Drug Ther. 2011;31:9S-17S.
Liu Y, Zhang M, Bu W. Bioactive nanomaterials for ion-interference remedy. VIEW. 2020;1:e18.
Li Y, Lin J, Wang P, Zhu F, Wu M, Luo Q, Zhang Y, Liu X. Tumor microenvironment-responsive yolk-shell NaCl@virus-inspired tetrasulfide-organosilica for ion-interference remedy through osmolarity surge and oxidative stress amplification. ACS Nano. 2022;16:7380–97.
Ding B, Sheng J, Zheng P, Li C, Li D, Cheng Z, Ma P, Lin J. Biodegradable upconversion nanoparticles induce pyroptosis for most cancers immunotherapy. Nano Lett. 2021;21:8281–9.
Ding S, He L, Bian X, Tian G. Steel-organic frameworks-based nanozymes for mixed most cancers remedy. Nano Right this moment. 2020;35:100920.
Ji P, Wang T-Y, Luo G-F, Chen W-H, Zhang X-Z. A tumor-cell biomimetic nanoplatform embedding organic enzymes for enhanced metabolic remedy. Chem Commun. 2021;57:9398–401.
Jiang F, Zhao Y, Yang C, Cheng Z, Liu M, Xing B, Ding B, Ma P, Lin J. A tumor microenvironment-responsive Co/ZIF-8/ICG/Pt nanoplatform for chemodynamic and enhanced photodynamic antitumor remedy. Dalton Trans. 2022;51:2798–804.
Dong S, Dong Y, Jia T, Liu S, Liu J, Yang D, He F, Gai S, Yang P, Lin J. GSH-depleted nanozymes with hyperthermia-enhanced twin enzyme-mimic actions for tumor nanocatalytic remedy. Adv Mater. 2020;32:2002439.
Chen Y, Chen M, Zhai T, Zhou H, Zhou Z, Liu X, Yang S, Yang H. Glutathione-responsive chemodynamic remedy of manganese(III/IV) cluster nanoparticles enhanced by electrochemical stimulation through oxidative stress pathway. Bioconjug Chem. 2022;33:152–63.
Liang S, Xiao X, Bai L, Liu B, Yuan M, Ma P, Pang M, Cheng Z, Lin J. Conferring Ti-based MOFs with defects for enhanced sonodynamic most cancers remedy. Adv Mater. 2021;33:2100333.
Liu M, Wu H, Wang S, Hu J, Solar B. Glutathione-triggered nanoplatform for chemodynamic/metal-ion remedy. J Mater Chem B. 2021;9:9413–22.
Qian M, Cheng Z, Luo G, Galluzzi M, Shen Y, Li Z, Yang H, Yu X-F. Molybdenum diphosphide nanorods with laser-potentiated peroxidase catalytic/mild-photothermal remedy of oral most cancers. Adv Sci. 2022;9:2101527.
Sanmamed MF, Chen L. A Paradigm shift in most cancers immunotherapy: from enhancement to normalization. Cell. 2018;175:313–26.
Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and purchased resistance to immune checkpoint focusing on. Lancet Oncol. 2017;18:e731–41.
Duan Q, Zhang H, Zheng J, Zhang L. Turning chilly into scorching: firing up the tumor microenvironment. Tendencies Most cancers. 2020;6:605–18.
Solar X, Zhang Y, Li J, Park KS, Han Ok, Zhou X, Xu Y, Nam J, Xu J, Shi X, et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for native and systemic most cancers metalloimmunotherapy. Nat Nanotechnol. 2021;16:1260–70.
Lötscher J, Líndez A-AM, Kirchhammer N, Cribioli E, Giordano Attianese GMP, Trefny MP, Lenz M, Rothschild SI, Strati P, Künzli M, et al. Magnesium sensing through LFA-1 regulates CD8+ T cell effector perform. Cell. 2022;185:585–602.
Schmidt M, Raghavan B, Müller V, Vogl T, Fejer G, Tchaptchet S, Keck S, Kalis C, Nielsen PJ, Galanos C, et al. Essential function for human toll-like receptor 4 within the growth of contact allergy to nickel. Nat Immunol. 2010;11:814–9.
Ferretti AP, Bhargava R, Dahan S, Tsokos MG, Tsokos GC. Calcium/calmodulin kinase IV controls the perform of each t cells and kidney resident cells. Entrance Immunol. 2018;9:2113.
Hojyo S, Fukada T. Roles of zinc signaling within the immune system. J Immunol Res. 2016;2016:6762343.
Farhan M, Oves M, Chibber S, Hadi SM, Ahmad A. Mobilization of nuclear copper by inexperienced tea polyphenol epicatechin-3-gallate and subsequent prooxidant breakage of mobile DNA: implications for most cancers chemotherapy. Int J Mol Sci. 2017;18:34.
Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E, Majouga A. Copper coordination compounds as biologically lively brokers. Int J Mol Sci. 2020;21:3965.
Afzal M, Alarifi A, Hasnain MS, Muddassir M. Elucidation of DNA binding interplay of recent Cu(II)/Zn(II) complexes derived from Schiff base and L-tryptophan amino acid: a multispectroscopic and molecular docking strategy. Environ Sci Pollut Res. 2021;28:44039–50.
Facchin G, Veiga N, Kramer MG, Batista AA, Várnagy Ok, Farkas E, Moreno V, Torre MH. Experimental and theoretical research of copper complexes with isomeric dipeptides as novel candidates towards breast most cancers. J Inorg Biochem. 2016;162:52–61.
Veiga N, Alvarez N, Castellano EE, Ellena J, Facchin G, Torre MH. Comparative research of antioxidant and pro-oxidant properties of homoleptic and heteroleptic copper complexes with amino acids, dipeptides and 1,10-phenanthroline: the search for antitumor compounds. Molecules. 2021;26:6520.
Ngo B, Van Riper JM, Cantley LC, Yun J. Concentrating on most cancers vulnerabilities with high-dose vitamin C. Nat Rev Most cancers. 2019;19:271–82.
Du Y-T, Lengthy Y, Tang W, Liu X-F, Dai F, Zhou B. Prooxidative inhibition towards NF-κB-mediated irritation by pharmacological vitamin C. Free Radical Biol Med. 2022;180:85–94.
Basak T, Kanwar RK. Iron imbalance in most cancers: intersection of deficiency and overload. Most cancers Med. 2022. https://doi.org/10.1002/cam4.4761.
Che M, Wang R, Li X, Wang H-Y, Zheng XFS. Increasing roles of superoxide dismutases in cell regulation and most cancers. Drug Discov Right this moment. 2016;21:143–9.
Track J, Liu T, Yin Y, Zhao W, Lin Z, Yin Y, Lu D, You F. The deubiquitinase OTUD1 enhances iron transport and potentiates host antitumor immunity. EMBO Rep. 2021;22:e51162.
Hassannia B, Vandenabeele P, Vanden Berghe T. Concentrating on ferroptosis to iron out most cancers. Most cancers Cell. 2019;35:830–49.
Jiang M, Yang T, Chu Y, Zhang Z, Solar H, Liang H, Yang F. Design of a novel Pt(ii) advanced to reverse cisplatin-induced resistance in lung most cancers through a multi-mechanism. Dalton Trans. 2022;51:5257–70.
Ravera M, Gabano E, McGlinchey MJ, Osella D. Pt(iv) antitumor prodrugs: dogmas, paradigms, and realities. Dalton Trans. 2022;51:2121–34.
Lu J-J, Ma X-R, Xie Ok, Yang P-X, Li R-T, Ye R-R. Novel heterobimetallic Ir(iii)–Re(i) complexes: design, synthesis and antitumor mechanism investigation. Dalton Trans. 2022;51:7907–17.
Gałczyńska Ok, Drulis-Kawa Z, Arabski M. Antitumor exercise of Pt(II), Ru(III) and Cu(II) complexes. Molecules. 2020;25:3492.
Zhang M, Qin X, Zhao Z, Du Q, Li Q, Jiang Y, Luan Y. A self-amplifying nanodrug to control the Janus-faced nature of ferroptosis for tumor remedy. Nanoscale Horiz. 2022;7:198–210.
Jia C, Guo Y, Wu F-G. Chemodynamic remedy through fenton and fenton-like nanomaterials: methods and up to date advances. Small. 2022;18:2103868.
Wu W, Yu L, Pu Y, Yao H, Chen Y, Shi J. Copper-enriched prussian blue nanomedicine for in situ disulfiram toxification and photothermal antitumor amplification. Adv Mater. 2020;32:2000542.
Liu Y, Zhen W, Wang Y, Track S, Zhang H. Na2S2O8 nanoparticles set off antitumor immunotherapy by way of reactive oxygen species storm and surge of tumor osmolarity. J Am Chem Soc. 2020;142:21751–7.
Lin L-S, Track J, Track L, Ke Ok, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, et al. Simultaneous fenton-like ion supply and glutathione depletion by MnO2-based nanoagent to boost chemodynamic remedy. Angew Chem Int Ed. 2018;57:4902–6.
Zhang Y, Yang Y, Jiang S, Li F, Lin J, Wang T, Huang P. Degradable silver-based nanoplatform for synergistic most cancers starving-like/metallic ion remedy. Mater Horiz. 2019;6:169–75.
Wu S, Zhang Ok, Liang Y, Wei Y, An J, Wang Y, Yang J, Zhang H, Zhang Z, Liu J, Shi J. Nano-enabled tumor systematic power exhaustion through zinc (II) interference mediated glycolysis inhibition and particular GLUT1 depletion. Adv Sci. 2022;9:2103534.
Shi J, Wang D, Ma Y, Liu J, Li Y, Reza R, Zhang Z, Liu J, Zhang Ok. Photoactivated self-disassembly of multifunctional DNA nanoflower allows amplified autophagy suppression for low-dose photodynamic remedy. Small. 2021;17:2104722.
Liu L, Liu Y, Ma L, Mao F, Jiang A, Liu D, Wang L, Jia Q, Zhou J. Artemisinin-loaded mesoporous nanoplatform for pH-responsive radical technology synergistic tumor theranostics. ACS Appl Mater Interfaces. 2018;10:6155–67.
Wang Z-F, Wei Q-C, Li J-X, Zhou Z, Zhang S-H. A brand new class of nickel(ii) oxyquinoline–bipyridine complexes as potent anticancer brokers induces apoptosis and autophagy in A549/DDP tumor cells by way of mitophagy pathways. Dalton Trans. 2022;51:7154–63.
Su X, Wang W-J, Cao Q, Zhang H, Liu B, Ling Y, Zhou X, Mao Z-W. A carbonic anhydrase IX (CAIX)-anchored rhenium(I) photosensitizer evokes pyroptosis for enhanced anti-tumor immunity. Angew Chem Int Ed. 2022;61:e202115800.
Liu Z-Y, Zhang J, Solar Y-M, Zhu C-F, Lu Y-N, Wu J-Z, Li J, Liu H-Y, Ye Y. Photodynamic antitumor exercise of Ru(ii) complexes of imidazo-phenanthroline conjugated hydroxybenzoic acid as tumor focusing on photosensitizers. J Mater Chem B. 2020;8:438–46.
Novohradsky V, Markova L, Kostrhunova H, Trávníček Z, Brabec V, Kasparkova J. An anticancer Os(II) bathophenanthroline advanced as a human breast most cancers stem cell-selective, mammosphere potent agent that kills cells by necroptosis. Sci Rep. 2019;9:13327.
Sandu N, Pöpperl G, Toubert M-E, Spiriev T, Arasho B, Orabi M, Schaller B. Present molecular imaging of spinal tumors in scientific apply. Mol Med. 2011;17:308–16.
Zhang J, Li C, Zhang X, Huo S, Jin S, An F-F, Wang X, Xue X, Okeke C, Duan G. In vivo tumor-targeted dual-modal fluorescence/CT imaging utilizing a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials. 2015;42:103–11.
Liu M, Anderson R-C, Lan X, Conti PS, Chen Ok. Current advances within the growth of nanoparticles for multimodality imaging and remedy of most cancers. Med Res Rev. 2020;40:909–30.
Tsang M-Ok, Wong Y-T, Hao J. Reducing-edge nanomaterials for superior multimodal bioimaging functions. Small Strategies. 2018;2:1700265.
Naumova AV, Modo M, Moore A, Murry CE, Frank JA. Medical imaging in regenerative drugs. Nat Biotechnol. 2014;32:804–18.
Fang L, Wang X, Lian Z, Yao Y, Zhang Y. Supervoxel-based mind tumor segmentation with multimodal MRI photos. Sign Picture Video Course of. 2022;16:1215–23.
Rogers CM, Jones PS, Weinberg JS. Intraoperative MRI for mind tumors. J Neurooncol. 2021;151:479–90.
Helm L, Morrow JR, Bond CJ, Carniato F, Botta M, Braun M, Baranyai Z, Pujales-Paradela R, Regueiro-Figueroa M, Esteban-Gómez D. Gadolinium-based distinction brokers. New Dev NMR. 2017;13:121.
Na HB, Track IC, Hyeon T. Inorganic nanoparticles for MRI distinction brokers. Adv Mater. 2009;21:2133–48.
Pellico J, Ellis CM, Davis JJ. Nanoparticle-based paramagnetic distinction brokers for magnetic resonance imaging. Distinction Media Mol Imaging. 2019;2019:1845637.
Shen Z, Track J, Zhou Z, Yung BC, Aronova MA, Li Y, Dai Y, Fan W, Liu Y, Li Z, et al. Dotted core-shell nanoparticles for T1-weighted MRI of tumors. Adv Mater. 2018;30:1803163.
Gale EM, Atanasova IP, Blasi F, Ay I, Caravan P. A manganese different to gadolinium for MRI distinction. J Am Chem Soc. 2015;137:15548–57.
Ratnakar SJ, Woods M, Lubag AJ, Kovács Z, Sherry AD. Modulation of water alternate in europium (III) DOTA− tetraamide complexes through digital substituent results. J Am Chem Soc. 2008;130:6–7.
Ratnakar SJ, Soesbe TC, Lumata LL, Do QN, Viswanathan S, Lin C-Y, Sherry AD, Kovacs Z. Modulation of CEST photos in vivo by T 1 leisure: a brand new strategy within the design of responsive PARACEST brokers. J Am Chem Soc. 2013;135:14904–7.
Blahut J, Hermann P, Gálisová A, Herynek V, Císařová I, Tošner Z, Kotek J. Nickel(ii) complexes of N-CH 2 CF 3 cyclam derivatives as distinction brokers for 19 F magnetic resonance imaging. Dalton Trans. 2016;45:474–8.
Yu M, Xie D, Phan KP, Enriquez JS, Luci JJ, Que EL. A Co II advanced for 19 F MRI-based detection of reactive oxygen species. Chem Commun. 2016;52:13885–8.
Blahut J, Bernášek Ok, Gálisová A, Herynek V, Císařová I, Kotek J, Lang J, Matějková S, Hermann P. Paramagnetic 19F leisure enhancement in nickel(II) complexes of N-trifluoroethyl cyclam derivatives and cell labeling for 19F MRI. Inorg Chem. 2017;56:13337–48.
Peterson KL, Srivastava Ok, Pierre VC. Fluorinated paramagnetic complexes: delicate and responsive probes for magnetic resonance spectroscopy and imaging. Entrance Chem. 2018;6:160.
Srivastava Ok, Weitz EA, Peterson KL, Marjańska M. Pierre VrC: Fe-and Ln-DOTAm-F12 are efficient paramagnetic fluorine distinction brokers for MRI in water and blood. Inorg Chem. 2017;56:1546–57.
Chalmers KH, De Luca E, Hogg NH, Kenwright AM, Kuprov I, Parker D, Botta M, Wilson JI, Blamire AM. Design rules and idea of paramagnetic fluorine-labelled lanthanide complexes as probes for 19F magnetic resonance: a proof-of-concept research. Chem A Eur J. 2010;16:134–48.
Ni D, Bu W, Zhang S, Zheng X, Li M, Xing H, Xiao Q, Liu Y, Hua Y, Zhou L. Mind tumors: single Ho3+-doped upconversion nanoparticles for high-performance T2-weighted mind tumor analysis and MR/UCL/CT multimodal imaging. Adv Funct Mater. 2014;24:6612–6612.
Xue D, Liu Y, Jin L, Wang Y, Cui F, Liu J, Li X, Zhang S, Zhao Y, Yin N. Novel multifunctional theranostic nanoagents primarily based on Ho3+ for CT/MRI dual-modality imaging-guided photothermal remedy. Sci china Chem. 2021;64:558–64.
Yi Z, Li X, Lu W, Liu H, Zeng S, Hao J. Hybrid lanthanide nanoparticles as a brand new class of binary distinction brokers for in vivo T1/T2 dual-weighted MRI and synergistic tumor analysis. J Mater Chem B. 2016;4:2715–22.
Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive evaluation and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol. 2009;51:433–45.
Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51:R29.
Meng X, Wu Y, Bu W. Purposeful CT distinction nanoagents for the tumor microenvironment. Adv Healthcare Mater. 2021;10:2000912.
Cheng J, Wang W, Xu X, Lin Z, Xie C, Zhang Y, Zhang T, Li L, Lu Y, Li Q. AgBiS2 nanoparticles with synergistic photodynamic and bioimaging properties for enhanced malignant tumor phototherapy. Mater Sci Eng C. 2020;107:110324.
Zhang C, Wang S-B, Chen Z-X, Fan J-X, Zhong Z-L, Zhang X-Z. A tungsten nitride-based degradable nanoplatform for dual-modal image-guided combinatorial chemo-photothermal remedy of tumors. Nanoscale. 2019;11:2027–36.
Li L, Chen H, Shi Y, Xing D. Human-body-temperature triggerable section transition of W-VO2@PEG nanoprobes with robust and switchable NIR-II absorption for deep and contrast-enhanced photoacoustic imaging. ACS Nano. 2022;16:2066–76.
Hernández-Rivera M, Kumar I, Cho SY, Cheong BY, Pulikkathara MX, Moghaddam SE, Whitmire KH, Wilson LJ. Excessive-performance hybrid bismuth–carbon nanotube primarily based distinction agent for X-ray CT imaging. ACS Appl Mater Interfaces. 2017;9:5709–16.
Li L, Lu Y, Lin Z, Mao AS, Jiao J, Zhu Y, Jiang C, Yang Z, Peng M, Mao C. Ultralong tumor retention of theranostic nanoparticles with quick peptide-enabled lively tumor homing. Mater Horiz. 2019;6:1845–53.
Wang Z, Wang G, Kang T, Liu S, Wang L, Zou H, Chong Y, Liu Y. BiVO4/Fe3O4@ polydopamine superparticles for tumor multimodal imaging and synergistic remedy. J Nanobiotechnol. 2021;19:1–11.
Cheng Y, Lu H, Yang F, Zhang Y, Dong H. Biodegradable FeWO x nanoparticles for CT/MR imaging-guided synergistic photothermal, photodynamic, and chemodynamic remedy. Nanoscale. 2021;13:3049–60.
Architha N, Ragupathi M, Shobana C, Selvankumar T, Kumar P, Lee YS, Kalai Selvan R. Microwave-assisted inexperienced synthesis of fluorescent carbon quantum dots from Mexican Mint extract for Fe3+ detection and bio-imaging functions. Environ Res. 2021;199:111263.
Hong G, Antaris AL, Dai H. Close to-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1:1–22.
Li Z, Ding X, Cong H, Wang S, Yu B, Shen Y. Current advances on inorganic lanthanide-doped NIR-II fluorescence nanoprobes for bioapplication. J Lumin. 2020;228:117627.
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4:435–46.
Miao Y, Gu C, Zhu Y, Yu B, Shen Y, Cong H. Current progress in fluorescence imaging of the near-infrared II window. ChemBioChem. 2018;19:2522–41.
Ma Z, Solar Y, Xie J, Li P, Lu Q, Liu M, Yin P, Li H, Zhang Y, Yao S. Facile preparation of MnO2 quantum dots with enhanced fluorescence through microenvironment engineering with the help of some reductive biomolecules. ACS Appl Mater Interfaces. 2020;12:15919–27.
Wu Y-Z, Solar J, Zhang Y, Pu M, Zhang G, He N, Zeng X. Efficient integration of focused tumor imaging and remedy utilizing functionalized InP QDs with VEGFR2 monoclonal antibody and miR-92a inhibitor. ACS Appl Mater Interfaces. 2017;9:13068–78.
Zhang J, Hao G, Yao C, Yu J, Wang J, Yang W, Hu C, Zhang B. Albumin-mediated biomineralization of paramagnetic NIR Ag2S QDs for tiny tumor bimodal focused imaging in vivo. ACS Appl Mater Interfaces. 2016;8:16612–21.
Owen J, Brus L. Chemical synthesis and luminescence functions of colloidal semiconductor quantum dots. J Am Chem Soc. 2017;139:10939–43.
Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed. 2008;47:7602–25.
Gao X, Han B, Yang X, Tang Z. Perspective of chiral colloidal semiconductor nanocrystals: alternative and problem. J Am Chem Soc. 2019;141:13700–7.
Chen O, Zhao J, Chauhan VP, Cui J, Wong C, Harris DK, Wei H, Han H-S, Fukumura D, Jain RK. Compact high-quality CdSe–CdS core–shell nanocrystals with slender emission linewidths and suppressed blinking. Nat Mater. 2013;12:445–51.
Pradhan N, Das Adhikari S, Nag A, Sarma D. Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals. Angew Chem Int Ed. 2017;56:7038–54.
Knowles KE, Hartstein KH, Kilburn TB, Marchioro A, Nelson HD, Whitham PJ, Gamelin DR. Luminescent colloidal semiconductor nanocrystals containing copper: synthesis, photophysics, and functions. Chem Rev. 2016;116:10820–51.
Zhang H, Yu J, Solar C, Xu W, Chen J, Solar H, Zong C, Liu Z, Tang Y, Zhao D. An aqueous route synthesis of transition-metal-ions-doped quantum dots by bimetallic cluster constructing blocks. J Am Chem Soc. 2020;142:16177–81.
Wang Z-F, Zhou X-F, Wei Q-C, Qin Q-P, Li J-X, Tan M-X, Zhang S-H. Novel bifluorescent Zn(II)–cryptolepine–cyclen complexes set off apoptosis induced by nuclear and mitochondrial DNA injury in cisplatin-resistant lung tumor cells. Eur J Med Chem. 2022;238:114418.
Lv Z, Jin L, Cao Y, Zhang H, Xue D, Yin N, Zhang T, Wang Y, Liu J, Liu X, Zhang H. A nanotheranostic agent primarily based on Nd3+-doped YVO4 with blood-brain-barrier permeability for NIR-II fluorescence imaging/magnetic resonance imaging and boosted sonodynamic remedy of orthotopic glioma. Gentle: Sci Appl. 2022;11:116.
Ichikawa Y, Kobayashi N, Takano S, Kato I, Endo Ok, Inoue T. Neuroendocrine tumor theranostics. Most cancers Sci. 2022;113:1930–8.
Yuan A, Qiu X, Tang X, Liu W, Wu J, Hu Y. Self-assembled PEG-IR-780-C13 micelle as a focusing on, protected and highly-effective photothermal agent for in vivo imaging and most cancers remedy. Biomaterials. 2015;51:184–93.
Hu D, Sheng Z, Zhu M, Wang X, Yan F, Liu C, Track L, Qian M, Liu X, Zheng H. Förster resonance power transfer-based dual-modal theranostic nanoprobe for In situ visualization of most cancers photothermal remedy. Theranostics. 2018;8:410–22.
Vijayan VM, Muthu J. Polymeric nanocarriers for most cancers theranostics. Polym Adv Technol. 2017;28:1572–82.
Wang J, Cui H. Nanostructure-based theranostic methods. Theranostics. 2016;6:1274–6.
Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic utility of nanoemulsions in chemotherapy. Drug Discovery Right this moment. 2020;25:1174–88.
Liu D, Yang F, Xiong F, Gu N. The good drug supply system and its scientific potential. Theranostics. 2016;6:1306–23.
Kundu P, Das S, Chattopadhyay N. Managing efficacy and toxicity of medicine: focused supply and excretion. Int J Pharm. 2019;565:378–90.
Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HMN. Endogenous and exogenous stimuli-responsive drug supply methods for programmed site-specific launch. Molecules. 2019. https://doi.org/10.3390/molecules24061117.
Zhang P, Hou Y, Zeng J, Li Y, Wang Z, Zhu R, Ma T, Gao M. Coordinatively unsaturated Fe3+ primarily based activatable probes for enhanced MRI and remedy of tumors. Angew Chem Int Ed. 2019;58:11088–96.
Mo Z, Li Q, Zhao Ok, Xu Q, Hu H, Chen X, Luo Y, Chi B, Liu L, Fang X. A nanoarchitectonic strategy allows triple modal synergistic therapies to boost antitumor results. ACS Appl Mater Interfaces. 2022;14:10001–14.
Rosenkrans ZT, Ferreira CA, Ni D, Cai W. Internally responsive nanomaterials for activatable multimodal imaging of most cancers. Adv Healthcare Mater. 2021;10:2000690.
Su M, Zhu Y, Chen J, Zhang B, Solar C, Chen M, Yang X. Microfluidic synthesis of manganese-alginate nanogels with self-supplying H2O2 functionality for synergistic chemo/chemodynamic remedy and boosting anticancer immunity. Chem Eng J. 2022;435:134926.
Mo Z, Qiu M, Zhao Ok, Hu H, Xu Q, Cao J, Luo Y, Liu L, Xu Z, Yi C, et al. Multifunctional phototheranostic nanoplatform primarily based on polydopamine-manganese dioxide-IR780 iodide for efficient magnetic resonance imaging-guided synergistic photodynamic/photothermal remedy. J Colloid Interface Sci. 2022;611:193–204.
Yuan M, Xu S, Zhang Q, Zhao B, Feng B, Ji Ok, Yu L, Chen W, Hou M, Xu Y, Fu X. Bicompatible porous Co3O4 nanoplates with intrinsic tumor metastasis inhibition for multimodal imaging and DNA injury–mediated tumor synergetic photothermal/photodynamic remedy. Chem Eng J. 2020;394:124874.
Zhu L, Wang J, Tang X, Zhang C, Wang P, Wu L, Gao W, Ding W, Zhang G, Tao X. Environment friendly magnetic nanocatalyst-induced chemo- and ferroptosis synergistic most cancers remedy together with T1–T2 dual-mode magnetic resonance imaging by way of doxorubicin supply. ACS Appl Mater Interfaces. 2022;14:3621–32.
Chen J, Zhang R, Tao C, Huang X, Chen Z, Li X, Zhou J, Zeng Q, Zhao B, Yuan M. CuS–NiS2 nanomaterials for MRI guided phototherapy of gastric carcinoma through triggering mitochondria-mediated apoptosis and MLKL/CAPG-mediated necroptosis. Nanotoxicology. 2020;14:774–87.
Wang Y, Track S, Lu T, Cheng Y, Track Y, Wang S, Tan F, Li J, Li N. Oxygen-supplementing mesoporous polydopamine nanosponges with WS2 QDs-embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic most cancers. Biomaterials. 2019;220:119405.
Zhang P, Wang L, Chen X, Li X, Yuan Q. Ultrasmall PEI-decorated Bi(2)Se(3) nanodots as a multifunctional theranostic nanoplatform for in vivo CT imaging-guided most cancers photothermal remedy. Entrance Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.795012.
Zhou Z, Xie J, Ma S, Luo X, Liu J, Wang S, Chen Y, Yan J, Luo F. Development of good nanotheranostic platform Bi-Ag@PVP: multimodal CT/PA imaging-guided PDT/PTT for most cancers remedy. ACS Omega. 2021;6:10723–34.
Zeng L, Zhao H, Zhu Y, Chen S, Zhang Y, Wei D, Solar J, Fan H. A one-pot synthesis of multifunctional Bi2S3 nanoparticles and the development of core–shell Bi2S3@Ce6–CeO2 nanocomposites for NIR-triggered phototherapy. J Mater Chem B. 2020;8:4093–105.
Wang J, Su X, Zhao P, Gao D, Chen R, Wang L. Most cancers photothermal remedy primarily based on close to infrared fluorescent CdSeTe/ZnS quantum dots. Anal Strategies. 2021;13:5509–15.
Li C-Q, Ma M-W, Zhang B, Chen W, Yin Z-Y, Xie X-T, Hou X-L, Zhao Y-D, Liu B. A self-assembled nanoplatform primarily based on Ag2S quantum dots and tellurium nanorods for mixed chemo-photothermal remedy guided by H2O2-activated near-infrared-II fluorescence imaging. Acta Biomater. 2022;140:547–60.
Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in most cancers remedy: the Pandora’s Field of most cancers stem cells. Stem Cell Res Ther. 2022;13:181.
Hammer MM, Byrne SC, Kong CY. Elements influencing the false optimistic price in CT lung most cancers screening. Acad Radiol. 2022;29:S18–22.
Alshememry KA, El-Tokhy SS, Unsworth DL. Utilizing properties of tumor microenvironments for controlling native, on-demand supply from biopolymer-based nanocarriers. Curr Pharm Des. 2017;23:5358–91.