EPFL. New world data: perovskite-on-silicon-tandem photo voltaic cells (2022); https://actu.epfl.ch/information/new-world-records-perovskite-on-silicon-tandem-sol/
Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting effectivity for crystalline silicon photo voltaic cells. IEEE J. Photovolt. 3, 1184–1191 (2013).
Bush, Okay. A. et al. Compositional engineering for environment friendly extensive band hole perovskites with improved stability to photoinduced section segregation. ACS Vitality Lett. 3, 428–435 (2018).
Bush, Okay. A. et al. Minimizing present and voltage losses to succeed in 25% environment friendly monolithic two-terminal perovskite–silicon tandem photo voltaic cells. ACS Vitality Lett. 3, 2173–2180 (2018).
Mazzarella, L. et al. Infrared gentle administration utilizing a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem photo voltaic cells with effectivity above 25%. Adv. Vitality Mater. 9, 1803241 (2019).
Köhnen, E. et al. Extremely environment friendly monolithic perovskite silicon tandem photo voltaic cells: analyzing the affect of present mismatch on machine efficiency. Maintain. Vitality Fuels 3, 1995–2005 (2019).
Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem photo voltaic cell with >29% effectivity by enhanced gap extraction. Science 370, 1300–1309 (2020).
Kim, D. et al. Environment friendly, steady silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).
Isikgor, F. H. et al. Concurrent cationic and anionic perovskite defect passivation permits 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586 (2021).
Xu, J. et al. Triple-halide extensive–band hole perovskites with suppressed section segregation for environment friendly tandems. Science 367, 1097–1104 (2020).
Schulze, P. S. C. et al. 25.1% excessive‐effectivity monolithic perovskite silicon tandem photo voltaic cell with a excessive bandgap perovskite absorber. Sol. RRL 4, 2000152 (2020).
Santbergen, R. et al. Minimizing optical losses in monolithic perovskite/c-Si tandem photo voltaic cells with a flat high cell. Decide. Specific 24, A1288 (2016).
Jäger, Okay., Sutter, J., Hammerschmidt, M., Schneider, P.-I. & Becker, C. Prospects of sunshine administration in perovskite/silicon tandem photo voltaic cells. Nanophotonics 10, 1991–2000 (2020).
Yoo, J. J. et al. Environment friendly perovskite photo voltaic cells by way of improved service administration. Nature 590, 587–593 (2021).
Sahli, F. et al. Totally textured monolithic perovskite/silicon tandem photo voltaic cells with 25.2% energy conversion effectivity. Nat. Mater. 17, 820–826 (2018).
Tennyson, E. M. et al. Multimodal microscale imaging of textured perovskite–silicon tandem photo voltaic cells. ACS Vitality Lett. 6, 2293–2304 (2021).
Roß, M. et al. Co-evaporated formamidinium lead iodide primarily based perovskites with 1000 h fixed stability for absolutely textured monolithic perovskite/silicon tandem photo voltaic cells. Adv. Vitality Mater. 11, 2101460 (2021).
Li, Y. et al. Vast bandgap interface layer induced stabilized perovskite/silicon tandem photo voltaic cells with stability over ten thousand hours. Adv. Vitality Mater. 11, 2102046 (2021).
Subbiah, A. S. et al. Excessive-performance perovskite single-junction and textured perovskite/silicon tandem photo voltaic cells by way of slot-die-coating. ACS Vitality Lett. 5, 3034–3040 (2020).
Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem photo voltaic cells. Joule 4, 850–864 (2020).
Hou, Y. et al. Environment friendly tandem photo voltaic cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).
Zhumagali, S. et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem photo voltaic cells. Adv. Vitality Mater. 11, 2101662 (2021).
Santbergen, R. et al. Ray-optics examine of mild non-conformal texture morphologies for perovskite/silicon tandems. Decide. Specific 30, 5608 (2022).
Chen, D. et al. Nanophotonic gentle administration for perovskite–silicon tandem photo voltaic cells. J. Photonics Vitality 8, 022601 (2018).
Tockhorn, P. et al. Improved quantum effectivity by superior gentle administration in nanotextured solution-processed perovskite photo voltaic cells. ACS Photonics 7, 2589–2600 (2020).
Sutter, J. et al. Tailor-made nanostructures for gentle administration in silicon heterojunction photo voltaic cells. Sol. RRL 4, 2000484 (2020).
Cruz, A. et al. Optoelectrical evaluation of TCO + silicon oxide double layers on the entrance and rear aspect of silicon heterojunction photo voltaic cells. Sol. Vitality Mater. Sol. Cells 236, 111493 (2022).
Bhushan, B., Jung, Y. C. & Koch, Okay. Micro-, nano- and hierarchical buildings for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. R. Soc. A 367, 1631–1672 (2009).
Joanny, J. F. & de Gennes, P. G. A mannequin for contact angle hysteresis. J. Chem. Phys. 81, 552–562 (1984).
Tadmor, R. Open issues in wetting phenomena: pinning retention forces. Langmuir 37, 6357–6372 (2021).
Wu, J., Xia, J., Lei, W. & Wang, B. Superior understanding of stickiness on superhydrophobic surfaces. Sci. Rep. 3, 3268 (2013).
Minemawari, H. et al. Inkjet printing of single-crystal movies. Nature 475, 364–367 (2011).
Zheng, G. et al. Manipulation of side orientation in hybrid perovskite polycrystalline movies by cation cascade. Nat. Commun. 9, 2793 (2018).
Chen, A. Z. et al. Crystallographic orientation propagation in metallic halide perovskite skinny movies. J. Mater. Chem. A 5, 7796–7800 (2017).
Xi, J. et al. Scalable, template pushed formation of extremely crystalline lead‐tin halide perovskite movies. Adv. Funct. Mater. 31, 2105734 (2021).
Luo, C. et al. Aspect orientation tailoring by way of 2D-seed-induced development permits extremely environment friendly and steady perovskite photo voltaic cells. Joule 6, 240–257 (2022).
Kim, W. et al. Oriented grains with most popular low-angle grain boundaries in halide perovskite movies by pressure-induced crystallization. Adv. Vitality Mater. 8, 1702369 (2017).
Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites towards excessive efficiency photo voltaic cells. Nano Lett. 14, 4158–4163 (2014).
Stolterfoht, M. et al. How you can quantify the effectivity potential of neat perovskite movies: perovskite semiconductors with an implied effectivity exceeding 28%. Adv. Mater. 32, 2000080 (2020).
Cho, C. et al. Results of photon recycling and scattering in high-performance perovskite photo voltaic cells. Sci. Adv. 7, eabj1363 (2021).
Tan, W. L. & McNeill, C. R. X-ray diffraction of photovoltaic perovskites: ideas and purposes. Appl. Phys. Rev. 9, 021310 (2022).
Kim, D. H. et al. 300% enhancement of service mobility in uniaxial-oriented perovskite movies fashioned by topotactic-oriented attachment. Adv. Mater. 29, 1606831 (2017).
Giesbrecht, N. et al. Synthesis of completely oriented and micrometer-sized MAPbBr3 perovskite crystals for thin-film photovoltaic purposes. ACS Vitality Lett. 1, 150–154 (2016).
Muscarella, L. A. et al. Crystal orientation and grain dimension: do they decide optoelectronic properties of MAPbI3 perovskite? J. Phys. Chem. Lett. 10, 6010–6018 (2019).
Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite photo voltaic cells. Nat. Vitality 3, 847–854 (2018).
Kirchartz, T., Staub, F. & Rau, U. Influence of photon recycling on the open-circuit voltage of metallic halide perovskite photo voltaic cells. ACS Vitality Lett. 1, 731–739 (2016).
Holman, Z. C., Descoeudres, A., Wolf, S. D. & Ballif, C. Document infrared inner quantum effectivity in silicon heterojunction photo voltaic cells with dielectric/metallic rear reflectors. IEEE J. Photovolt. 3, 1243–1249 (2013).
Boccard, M. et al. Low-refractive-index nanoparticle interlayers to cut back parasitic absorption in metallic rear reflectors of photo voltaic cells. Phys. Standing Solidi A 214, 1700179 (2017).
Bush, Okay. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem photo voltaic cells with improved stability. Nat. Vitality 2, 17009 (2017).
Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite photo voltaic cells. ACS Vitality Lett. 5, 2728–2736 (2020).
Wolf, A. J. et al. Origination of nano- and microstructures on giant areas by interference lithography. Microelectron. Eng. 98, 293–296 (2012).
Kern, W. The evolution of silicon wafer cleansing expertise. J. Electrochem. Soc. 137, 1887–1892 (1990).
Saliba, M. et al. Cesium-containing triple cation perovskite photo voltaic cells: improved stability, reproducibility and excessive effectivity. Vitality Environ. Sci. 9, 1989–1997 (2016).
Pierce, E., Carmona, F. J. & Amirfazli, A. Understanding of sliding and get in touch with angle ends in tilted plate experiments. Colloids Surf. A 323, 73–82 (2008).
Zizak, I. The mySpot beamline at BESSY II. J. Massive-Scale Res. Facil. 2, A102 (2016).
Benecke, G. et al. A customizable software program for quick discount and evaluation of huge X-ray scattering information units: purposes of the brand new DPDAK bundle to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J. Appl. Crystallogr. 47, 1797–1803 (2014).
Jiang, Z. GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering information visualization and discount, and indexing of buried three-dimensional periodic nanostructured movies. J. Appl. Crystallogr. 48, 917–926 (2015).
Meusel, M., Adelhelm, R., Dimroth, F., Bett, A. W. & Warta, W. Spectral mismatch correction and spectrometric characterization of monolithic III–V multi-junction photo voltaic cells. Prog. Photovolt: Res. Appl. 10, 243–255 (2002).
Schneider, P.-I., Garcia Santiago, X., Rockstuhl, C. & Burger, S. International optimization of complicated optical buildings utilizing Bayesian optimization primarily based on Gaussian processes. In Digital Optical Know-how 2017 (eds Kress B. C. et al.) 103350O (SPIE, 2017); https://doi.org/10.1117/12.2270609
Jäger, Okay., Korte, L., Rech, B. & Albrecht, S. Numerical optical optimization of monolithic planar perovskite–silicon tandem photo voltaic cells with common and inverted machine architectures. Decide. Specific 25, A473 (2017).
Pomplun, J., Burger, S., Zschiedrich, L. & Schmidt, F. Adaptive finite aspect methodology for simulation of optical nano buildings. Physica Standing Solidi B Fundamental Stable State Phys. 244, 3419–3434 (2007).
Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. Limiting effectivity of silicon photo voltaic cells. IEEE Trans. Electron Gadgets 31, 711–716 (1984).
Santbergen, R. et al. GenPro4 optical mannequin for photo voltaic cell simulation and its utility to multijunction photo voltaic cells. IEEE J. Photovolt. 7, 919–926 (2017).
Fell, A. A free and quick three-dimensional/two-dimensional photo voltaic cell simulator that includes conductive boundary and quasi-neutrality approximations. IEEE Trans. Electron Gadgets 60, 733–738 (2013).
Tockhorn, P. et al. Complement to: Nano-optical designs for top effectivity monolithic perovskite–silicon tandem photo voltaic cells (HZB Information Service, 2022); https://doi.org/10.5442/ND000009