HomeNanotechnologyImmunotherapy for type 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded asymmetric...

Immunotherapy for type 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP) | Journal of Nanobiotechnology


  • Zhao X, Birchall JC, Coulman SA, Tatovic D, Singh RK, Wen L, Wong FS, Dayan CM, Hanna SJ. Microneedle delivery of autoantigen for immunotherapy in type 1 diabetes. J Control Release. 2016; 223:178–187.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vojislav C, Natasa R, Milica P, Slobodan A, Radivoj K, Danijela R, Sasa R. Incidence trend of type 1 diabetes mellitus in Serbia. BMC Endocr Disord. 2020; 20(1):34.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roglic G. WHO global report on diabetes: a summary. Int J Noncommun Dis. 2016; 1(1):3.

    Article 

    Google Scholar
     

  • Desai S, Deshmukh A. Mapping of type 1 diabetes mellitus. Curr Diabetes Rev. 2020; 16(5):438–441.

    PubMed 
    Article 

    Google Scholar
     

  • Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010; 464(7293):1293–1300.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roep BO. The role of T-cells in the pathogenesis of type 1 diabetes: from cause to cure. Diabetologia. 2003; 46(3):305–321.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bach J-F, Chatenoud L. The hygiene hypothesis: an explanation for the increased frequency of insulin-dependent diabetes. Cold Spring Harb Perspect Med. 2012; 2(2):a007799.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol. 2021; 17(3):150–161.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kobos E, Imiela J. Factors affecting the level of burden of caregivers of children with type 1 diabetes. Appl Nurs Res. 2015; 28(2):142–149.

    PubMed 
    Article 

    Google Scholar
     

  • Commissariat PV, Harrington KR, Whitehouse AL, Miller KM, Hilliard ME, Van Name M, DeSalvo DJ, Tamborlane WV, Anderson BJ, DiMeglio LA, Laffel LM. “I’m essentially his pancreas”: parent perceptions of diabetes burden and opportunities to reduce burden in the care of children < 8 years old with type 1 diabetes. Pediatr Diabetes. 2020;21(2):377–83.

    PubMed 
    Article 

    Google Scholar
     

  • Al-Mutairi HF, Mohsen AM, Al-Mazidi ZM. Genetics of type I diabetes. Kuwait Med J. 2007; 39:107–115.


    Google Scholar
     

  • Acharjee S, Ghosh B, Al-Dhubiab BE, Nair AB. Understanding type 1 diabetes: etiology and models. Can J Diabetes. 2013; 37(4):269–276.

    PubMed 
    Article 

    Google Scholar
     

  • van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91(1):79–118.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Tosur M, Redondo MJ, Lyons SK. Adjuvant pharmacotherapies to insulin for the treatment of type 1 diabetes. Curr Diab Rep. 2018; 18(10):79.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Waldron-Lynch F, Herold KC. Immunomodulatory therapy to preserve pancreatic β-cell function in type 1 diabetes. Nat Rev Drug Discov. 2011; 10(6):439–452.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, Yang H, Suthanthiran M, Mojsov S, Steinman RM. Dendritic cell-expanded, islet-specific CD4 + CD25 + CD62L + regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med. 2007; 204(1):191–201.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tai N, Yasuda H, Xiang Y, Zhang L, Rodriguez-Pinto D, Yokono K, Sherwin R, Wong FS, Nagata M, Wen L. IL-10-conditioned dendritic cells prevent autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice. Clin Immunol. 2011; 139(3):336–349.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ziegler A-G, Bonifacio E. Shortening the paths to type 1 diabetes mellitus prevention. Nat Rev Endocrinol. 2021; 17(2):73–74.

    PubMed 
    Article 

    Google Scholar
     

  • Rosenzwajg M, Salet R, Lorenzon R, Tchitchek N, Roux A, Bernard C, Carel J-C, Storey C, Polak M, Beltrand J, et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia. 2020; 63(9):1808–1821.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nepom GT, Ehlers M, Mandrup-Poulsen T. Anti-cytokine therapies in T1D: Concepts and strategies. Clin Immunol. 2013; 149(3):279–285.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pihl M, Barcenilla H, Axelsson S, Chéramy M, Åkerman L, Johansson I, Ludvigsson J, Casas R. GAD-specific T cells are induced by GAD-alum treatment in Type-1 diabetes patients. Clin Immunol. 2017; 176:114–121.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roep BO, Wheeler DCS, Peakman M. Antigen-based immune modulation therapy for type 1 diabetes: the era of precision medicine. Lancet Diabetes Endocrinol. 2019; 7(1):65–74.

    PubMed 
    Article 

    Google Scholar
     

  • Atkinson MA, Roep BO, Posgai A, Wheeler DCS, Peakman M. The challenge of modulating β-cell autoimmunity in type 1 diabetes. Lancet Diabetes Endocrinol. 2019; 7(1):52–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yazdanbakhsh M, Kremsner PG, van Ree R. Allergy, parasites, and the hygiene hypothesis. Science. 2002; 296(5567):490–494.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bach J-F. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol. 2018; 18(2):105–120.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun. 2007; 75(1):397–407.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lund ME, O’Brien BA, Hutchinson AT, Robinson MW, Simpson AM, Dalton JP, Donnelly S. Secreted proteins from the helminth Fasciola hepatica inhibit the initiation of autoreactive T cell responses and prevent diabetes in the NOD mouse. PLoS One. 2014; 9(1):e86289.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Berbudi A, Ajendra J, Wardani APF, Hoerauf A, Hübner MP. Parasitic helminths and their beneficial impact on type 1 and type 2 diabetes. Diabetes Metab Res Rev. 2016; 32(3):238–250.

    PubMed 
    Article 

    Google Scholar
     

  • Espinoza-Jiménez A, De Haro R, Terrazas LI. Antigens control experimental type 1 diabetes by inducing alternatively activated macrophages. Mediators Inflamm. 2017;2017:8074329.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tang C-L, Zou J-N, Zhang R-H, Liu Z-M, Mao C-L. Helminths protect against type 1 diabetes: effects and mechanisms. Parasitol Res. 2019; 118(4):1087–1094.

    PubMed 
    Article 

    Google Scholar
     

  • Araújo MI, Hoppe BS, Medeiros M, Carvalho EM. Schistosoma mansoni infection modulates the immune response against allergic and auto-immune diseases. Mem Inst Oswaldo Cruz. 2004;99(5 Suppl 1):27–32.

    PubMed 
    Article 

    Google Scholar
     

  • Osada Y, Kanazawa T. Parasitic helminths: new weapons against immunological disorders. J Biomed Biotechnol. 2010;2010743758.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kriegel MA, Sefik E, Hill JA, Wu H-J, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011; 108(28):11548–11553.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lau K, Benitez P, Ardissone A, Wilson TD, Collins EL, Lorca G, Li N, Sankar D, Wasserfall C, Neu J, et al. Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. J Immunol. 2011; 186(6):3538–3546.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan K, Wang B, Zhou H, Luo Q, Shen J, Xu Y, Zhong Z. Amelioration of type 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model. Parasitol Res. 2020;119(1):203–14.

    PubMed 
    Article 

    Google Scholar
     

  • Hung J-T, Liao J-H, Lin Y-C, Chang H-Y, Wu S-F, Chang T-H, Kung JT, Hsieh S-L, McDevitt H, Sytwu H-K. Immunopathogenic role of TH1 cells in autoimmune diabetes: evidence from a T1 and T2 doubly transgenic non-obese diabetic mouse model. J Autoimmun. 2005; 25(3):181–192.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaccone P, Burton OT, Gibbs S, Miller N, Jones FM, Dunne DW, Cooke A. Immune modulation by Schistosoma mansoni antigens in NOD mice: effects on both innate and adaptive immune systems. J Biomed Biotechnol. 2010;2010:795210.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Duan Q, Xiong L, Liao C, Liu Z, Xiao Y, Huang R, Tan T, Ouyang Y, Cai J, Xiao M, et al. Population based and animal study on the effects of Schistosoma japonicum infection in the regulation of host glucose homeostasis. Acta Trop. 2018; 180:33–41.

    PubMed 
    Article 

    Google Scholar
     

  • Chen W, Wainer J, Ryoo SW, Qi X, Chang R, Li J, Lee SH, Min S, Wentworth A, Collins JE, et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci Adv. 2022; 8(1):eabk1792.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen W, Wang Z, Wang L, Chen X. Smart chemical engineering-based lightweight and miniaturized attachable systems for advanced drug delivery and diagnostics. Adv Mater. 2022; 34(6):e2106701.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chen W, Cai B, Geng Z, Chen F, Wang Z, Wang L, Chen X. Reducing false negatives in COVID-19 testing by using microneedle-based oropharyngeal swabs. Matter. 2020; 3(5):1589–1600.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cai B, Gong Y, Wang Z, Wang L, Chen W. Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics. 2021; 11(20):10012–10029.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen W, Tian R, Xu C, Yung BC, Wang G, Liu Y, Ni Q, Zhang F, Zhou Z, Wang J, et al. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Commun. 2017; 8(1):1777.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012; 64(14):1547–1568.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, Morrissey A, Birchall JC. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices. 2009; 11(1):35–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Yu J, Kahkoska AR, Wang J, Buse JB, Gu Z. Advances in transdermal insulin delivery. Adv Drug Deliv Rev. 2019; 139:51–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang P, Wang Y, Yi Y, Gong Y, Ji H, Gan Y, Xie F, Fan J, Wang X. MXenes-integrated microneedle combined with asiaticoside to penetrate the cuticle for treatment of diabetic foot ulcer. J Nanobiotechnology. 2022; 20(1):259.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Demuth PC, Garcia-Beltran WF, Ai-Ling ML, Hammond PT, Irvine DJ. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Adv Funct Mater. 2013; 23(2):161–172.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amani H, Shahbazi M-A, D’Amico C, Fontana F, Abbaszadeh S, Santos HA. Microneedles for painless transdermal immunotherapeutic applications. J Control Release. 2021; 330:185–217.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park J, Kim Y-C. Topical delivery of 5-fluorouracil-loaded carboxymethyl chitosan nanoparticles using microneedles for keloid treatment. Drug Deliv Transl Res. 2021; 11(1):205–213.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Capanema NSV, Mansur AAP, de Jesus AC, Carvalho SM, de Oliveira LC, Mansur HS. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Biol Macromol. 2018; 106:1218–1234.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim JD, Kim M, Yang H, Lee K, Jung H. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release. 2013; 170(3):430–436.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Candido RRF, Favero V, Duke M, Karl S, Gutiérrez L, Woodward RC, Graeff-Teixeira C, Jones MK, St Pierre TG. The affinity of magnetic microspheres for Schistosoma eggs. Int J Parasitol. 2015; 45(1):43–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karl S, Gutiérrez L, Lucyk-Maurer R, Kerr R, Candido RRF, Toh SQ, Saunders M, Shaw JA, Suvorova A, Hofmann A, et al. The iron distribution and magnetic properties of schistosome eggshells: implications for improved diagnostics. PLoS Negl Trop Dis. 2013; 7(5):e2219.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989; 299(6710):1259–1260.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weintrob N, Sprecher E, Israel S, Pinhas-Hamiel O, Kwon OJ, Bloch K, Abramov N, Arbel A, Josefsberg Z, Brautbar C, Vardi P. Type 1 diabetes environmental factors and correspondence analysis of HLA class II genes in the Yemenite Jewish community in Israel. Diabetes Care. 2001; 24(4):650–653.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elliott DE, Weinstock JV. Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann N Y Acad Sci. 2012; 1247:83–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Du L, Tang H, Ma Z, Xu J, Gao W, Chen J, Gan W, Zhang Z, Yu X, Zhou X, Hu X. The protective effect of the recombinant 53-kDa protein of Trichinella spiralis on experimental colitis in mice. Dig Dis Sci. 2011; 56(10):2810–2817.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weinstock JV, Elliott DE. Translatability of helminth therapy in inflammatory bowel diseases. Int J Parasitol. 2013; 43(3–4):245–251.

    PubMed 
    Article 

    Google Scholar
     

  • Leonardi I, Gerstgrasser A, Schmidt TSB, Nicholls F, Tewes B, Greinwald R, von Mering C, Rogler G, Frey-Wagner I. Preventive Trichuris suis ova (TSO) treatment protects immunocompetent rabbits from DSS colitis but may be detrimental under conditions of immunosuppression. Sci Rep. 2017; 7(1):16500.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kron MA, Metwali A, Vodanovic-Jankovic S, Elliott D. Nematode asparaginyl-tRNA synthetase resolves intestinal inflammation in mice with T-cell transfer colitis. Clin Vaccine Immunol. 2013; 20(2):276–281.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Navarro S, Pickering DA, Ferreira IB, Jones L, Ryan S, Troy S, Leech A, Hotez PJ, Zhan B, Laha T, et al. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. Sci Transl Med. 2016; 8(362):362ra143.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hirahara K, Vahedi G, Ghoreschi K, Yang X-P, Nakayamada S, Kanno Y, O’Shea JJ, Laurence A. Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology. 2011; 134(3):235–245.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martínez-Méndez D, Villarreal C, Mendoza L, Huerta L. An integrative network modeling approach to T CD4 cell activation. Front Physiol. 2020; 11:380.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, Hoffmüller U, Baron U, Olek S, Bluestone JA, Brusko TM. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol. 2011; 186(7):3918–3926.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin Microbiol Rev. 2012; 25(4):585–608.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fairfax K, Nascimento M, Huang SC-C, Everts B, Pearce EJ. Th2 responses in schistosomiasis. Semin Immunopathol. 2012; 34(6):863–871.

    PubMed 
    Article 

    Google Scholar
     

  • Cooke A, Tonks P, Jones FM, O’Shea H, Hutchings P, Fulford AJ, Dunne DW. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 1999;21(4):169–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaccone P, Burton O, Miller N, Jones FM, Dunne DW, Cooke A. Schistosoma mansoni egg antigens induce Treg that participate in diabetes prevention in NOD mice. Eur J Immunol. 2009; 39(4):1098–1107.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cleenewerk L, Garssen J, Hogenkamp A. Clinical use of antigens as novel immunotherapies for autoimmune disorders. Front Immunol. 2020; 11:1821.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zaccone P, Fehérvári Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A. Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol. 2003; 33(5):1439–1449.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaccone P, Burton OT, Gibbs SE, Miller N, Jones FM, Schramm G, Haas H, Doenhoff MJ, Dunne DW, Cooke A. The S. mansoni glycoprotein ω-1 induces Foxp3 expression in NOD mouse CD4+ T cells. Eur J Immunol. 2011; 41(9):2709–2718.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zou J, Liu W, Lei J, Mo H, Wang C, Yu G, Cheng Y, Li Y. Effect of chronic infection with Schistosoma japonicum on multiple low-dose streptozotocin induced diabetes mellitus in mice. J Pathog Biol. 2006;24(1):51–5.


    Google Scholar
     

  • Hams E, Aviello G, Fallon PG. The schistosoma granuloma: friend or foe? Front Immunol. 2013; 4:89.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang L, Yu Z, Wan S, Wu F, Chen W, Zhang B, Lin D, Liu J, Xie H, Sun X, Wu Z. Exosomes derived from dendritic cells treated with soluble egg antigen attenuate DSS-induced colitis. Front Pharmacol. 2017; 8:651.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang S, Xie Y, Yang X, Wang X, Yan K, Zhong Z, Wang X, Xu Y, Zhang Y, Liu F, Shen J. Therapeutic potential of recombinant cystatin from Schistosoma japonicum in TNBS-induced experimental colitis of mice. Parasit Vectors. 2016;9:6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • McCrudden MTC, McAlister E, Courtenay AJ, González-Vázquez P, Singh TRR, Donnelly RF. Microneedle applications in improving skin appearance. Exp Dermatol. 2015; 24(8):561–566.

    PubMed 
    Article 

    Google Scholar
     

  • Richter-Johnson J, Kumar P, Choonara YE, du Toit LC, Pillay V. Therapeutic applications and pharmacoeconomics of microneedle technology. Expert Rev Pharmacoecon Outcomes Res. 2018; 18(4):359–369.

    PubMed 
    Article 

    Google Scholar
     

  • Ohta N, Asahi H, Hosaka Y, Minai M, Ishii A. Regulation of the human T-cell response to Schistosoma japonicum egg antigen by concomitant cellular and humoral mechanisms in vitro. Parasitol Res. 1991;77(1):54–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carson JP, Robinson MW, Hsieh MH, Cody J, Le L, You H, McManus DP, Gobert GN. A comparative proteomics analysis of the egg secretions of three major schistosome species. Mol Biochem Parasitol. 2020; 240:111322.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccin Immunother. 2015; 11(2):477–488.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protocols Pharmacol. 2015;70(1):5–47.

    Article 

    Google Scholar
     

  • Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976; 193(4251):415–417.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kolb-Bachofen V, Epstein S, Kiesel U, Kolb H. Low-dose streptozocin-induced diabetes in mice. Electron microscopy reveals single-cell insulitis before diabetes onset. Diabetes. 1988; 37(1):21–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paik SG, Fleischer N, Shin SI. Insulin-dependent diabetes mellitus induced by subdiabetogenic doses of streptozotocin: obligatory role of cell-mediated autoimmune processes. Proc Natl Acad Sci U S A. 1980; 77(10):6129–6133.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Herold KC, Montag AG, Fitch FW. Treatment with anti-T-lymphocyte antibodies prevents induction of insulitis in mice given multiple doses of streptozocin. Diabetes. 1987; 36(7):796–801.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klinkhammer C, Popowa P, Gleichmann H. Specific immunity to streptozocin. Cellular requirements for induction of lymphoproliferation. Diabetes. 1988; 37(1):74–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klinkhammer C, Dohle C, Gleichmann H. T cell-dependent class II major histocompatibility complex antigen expression in vivo induced by the diabetogen streptozotocin. Immunobiology. 1989;180:1.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cockfield SM, Ramassar V, Urmson J, Halloran PF. Multiple low dose streptozotocin induces systemic MHC expression in mice by triggering T cells to release IFN-gamma. J Immunol. 1989; 142(4):1120–1128.

    CAS 
    PubMed 

    Google Scholar
     

  • Lukić ML, Stosić-Grujicić S, Shahin A. Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev Immunol. 1998; 6(1–2):119–128.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, Li H, Chung J, Sohn J, Kim S, et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol. 2016; 1(11):16140.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments