Rus, D. & Tolley, M. T. Design, fabrication and management of sentimental robots. Nature 521, 467–475 (2015).
Gelebart, A. H. et al. Making waves in a photoactive polymer movie. Nature 546, 632–636 (2017).
Wehner, M. et al. Pneumatic vitality sources for autonomous and wearable smooth robotics. Mushy Robotic. 1, 263–274 (2014).
He, Q., Wang, Z., Music, Z. & Cai, S. Bioinspired design of vascular synthetic muscle. Adv. Mater. Technol. 4, 1800244 (2019).
Palagi, S. et al. Structured mild permits biomimetic swimming and versatile locomotion of photoresponsive smooth microrobots. Nat. Mater. 15, 647–653 (2016).
Yang, G. Z. et al. The grand challenges of science robotics. Sci. Robotic. 3, eaar7650 (2018).
Tawfick, S. & Tang, Y. Stronger synthetic muscle groups, with a twist. Science 365, 125–126 (2019).
Lima, M. D. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscle groups. Science 338, 928–932 (2012).
Chu, H. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscle groups. Science 371, 494–498 (2021).
Kanik, M. et al. Pressure-programmable fiber-based synthetic muscle. Science 365, 145–150 (2019).
Mu, J. et al. Sheath-run synthetic muscle groups. Science 365, 150–155 (2019).
Yuan, J. et al. Form reminiscence nanocomposite fibers for untethered high-energy microengines. Science 365, 155–158 (2019).
Yang, Y. et al. Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv. Mater. 27, 6376–6381 (2015).
Koerner, H., Value, G., Pearce, N. A., Alexander, M. & Vaia, R. A. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004).
Li, C., Liu, Y., Huang, X. & Jiang, H. Direct sun-driven synthetic heliotropism for photo voltaic vitality harvesting primarily based on a photo-thermomechanical liquid-crystal elastomer nanocomposite. Adv. Funct. Mater. 22, 5166–5174 (2012).
Yang, L., Setyowati, Ok., Li, A., Gong, S. & Chen, J. Reversible infrared actuation of carbon nanotube-liquid crystalline elastomer nanocomposites. Adv. Mater. 20, 2271–2275 (2008).
Kim, H. et al. Intelligently actuating liquid crystal elastomer‐carbon nanotube composites. Adv. Funct. Mater. 29, 1905063 (2019).
Ahir, S. V. & Terentjev, E. M. Photomechanical actuation in polymer–nanotube composites. Nat. Mater. 4, 491–495 (2005).
Liu, M. et al. Conductive carbon nanofiber interpenetrated graphene structure for ultra-stable sodiumion battery. Nat. Commun. 10, 3917 (2019).
Al-Dhahebi, A. M., Gopinath, S. C. B. & Saheed, M. S. M. Graphene impregnated electrospun nanofiber sensing supplies: a complete overview on bridging laboratory set-up to business. Nano Converg. 7, 27 (2020).
Zhang, J. et al. Multiscale deformations result in excessive toughness and circularly polarized emission in helical nacre-like fibres. Nat. Commun. 7, 10701 (2016).
Roberts, T. J. et al. Three-dimensional nature of skeletal muscle contraction. Physiology 34, 402–408 (2019).
Raez, M. B., Hussain, M. S. & Mohd-Yasin, F. Strategies of EMG sign evaluation: detection, processing, classification and purposes. Biol. Proced. On-line 8, 11–35 (2006).
Ware, T. H., McConney, M. E., Wie, J. J., Tondiglia, V. P. & White, T. J. Actuating supplies. Voxelated liquid crystal elastomers. Science 347, 982–984 (2015).
Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).
White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).
Pei, Z. et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 13, 36–41 (2014).
Guin, T. et al. Layered liquid crystal elastomer actuators. Nat. Commun. 9, 2531 (2018).
Lopez-Valdeolivas, M., Liu, D., Broer, D. J. & Sanchez-Somolinos, C. 4D printed actuators with soft-robotic capabilities. Macromol. Speedy Commun. 39, 1700710 (2018).
Kotikian, A., Truby, R. L., Boley, J. W., White, T. J. & Lewis, J. A. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30, 1706164 (2018).
Roach, D. J., Kuang, X., Yuan, C., Chen, Ok. & Qi, H. J. Novel ink for ambient situation printing of liquid crystal elastomers for 4D printing. Sensible Mater. Struct. 27, 125011 (2018).
Ambulo, C. P. et al. 4-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9, 37332–37339 (2017).
Kohlmeyer, R. R. & Chen, J. Wavelength-selective, IR light-driven hinges primarily based on liquid crystalline elastomer composites. Angew. Chem. Int. Ed. 52, 9234–9237 (2013).
Sasikala, S. P. et al. Graphene oxide liquid crystals: a frontier 2D smooth materials for graphene-based purposeful supplies. Chem. Soc. Rev. 47, 6013–6045 (2018).
Kim, F., Cote, L. J. & Huangm, J. Graphene oxide: floor exercise and two-dimensional meeting. Adv. Mater. 22, 1954–1958 (2010).
Parvez, Ok. et al. Exfoliation of graphite into graphene in aqueous options of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014).
Kim, D. W., Kim, Y. H., Jeong, H. S. & Jung, H. T. Direct visualization of large-area graphene domains and limits by optical birefringency. Nat. Nanotechnol. 7, 29–34 (2011).
Potts, J. R., Dreyer, D. R., Bielawski, C. W. & Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011).
Tang, T. T. et al. A tunable phonon–exciton Fano system in bilayer graphene. Nat. Nanotechnol. 5, 32–36 (2010).
Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).
Benveniste, Y. A brand new method to the appliance of Mori-Tanaka’s idea in composite supplies. Mech. Mater. 6, 147–157 (1987).
Azoug, A. et al. Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers. Polymer 98, 165–171 (2016).
Döhler, D. et al. Tuning the self-healing response of poly(dimethylsiloxane)-based elastomers. ACS Appl. Poly. Mater. 2, 4127–4139 (2020).
Papageorgiou, D. G., Kinloch, I. A. & Younger, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017).
Lee, S., Amjadi, M., Pugno, N., Park, I. & Ryu, S. Computational evaluation of metallic nanowire-elastomer nanocomposite primarily based pressure sensors. AIP Adv. 5, 117233 (2015).
Balandin, A. A. Thermal properties of graphene and nanostructured carbon supplies. Nat. Mater. 10, 569–581 (2011).
Savchuk, Ol. A., Carvajal, J. J., Massons, J., Aguiló, M. & Díaz, F. Willpower of photothermal conversion effectivity of graphene and graphene oxide by way of an integrating sphere methodology. Carbon 103, 134–141 (2016).
Xie, Z. et al. The rise of 2D photothermal supplies past graphene for clear water manufacturing. Adv. Sci. 7, 1902236 (2020).
Yoon, H.-H., Kim, D.-Y., Jeong, Ok.-U. & Ahn, S.-Ok. Floor aligned main-chain liquid crystalline elastomers: tailor-made properties by the selection of amine chain extenders. Macromolecules 51, 1141–1149 (2018).
Ryu, S., Lee, S., Jung, J., Lee, J. & Kim, Y. Micromechanics-based homogenization of the efficient bodily properties of composites with an anisotropic matrix and interfacial imperfections. Entrance. Mater. 6, 21 (2019).
Jung, J., Lee, S., Ryu, B. & Ryu, S. Investigation of efficient thermoelectric properties of composite with interfacial resistance utilizing micromechanics-based homogenisation. Int. J. Warmth Mass Transf. 144, 118620 (2019).
Lee, S., Jung, J. & Ryu, S. Micromechanics-based prediction of the efficient properties of piezoelectric composite having interfacial imperfections. Compos. Struct. 240, 112076 (2020).
Kim, I. H. et al. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical energy and electrical conductivity. Adv. Mater. 30, 1803267 (2018).
López, V. et al. Chemical vapor deposition restore of graphene oxide: a path to highly-conductive graphene monolayers. Adv. Mater. 21, 4683–4686 (2009).
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. & Eklund, P. C. Raman scattering from high-frequency phonons in supported n-graphene layer movies. Nano Lett. 6, 2667–2673 (2006).
Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).
Madden, J. D. W. et al. Synthetic muscle know-how: bodily rules and naval prospects. IEEE J. Ocean. Eng. 29, 706–728 (2004).
Chai, P. & Millard, D. Flight and measurement constraints: hovering efficiency of huge hummingbirds underneath maximal loading. J. Exp. Biol. 200, 2757–2763 (1997).
Rome, L. C. & Swank, D. The affect of temperature on energy output of scup purple muscle throughout cyclical size modifications. J. Exp. Biol. 171, 261–281 (1992).
Stevenson, R. D. & Josephson, R. Ok. Results of working frequency and temperature on mechanical energy output from moth flight muscle. J. Exp. Biol. 149, 61–78 (1990).
Wang, L. et al. A room-temperature two-stage thiol–ene photoaddition method in direction of monodomain liquid crystalline elastomers. Polym. Chem. 8, 1364–1370 (2017).
Luo, C. et al. 3D printing of liquid crystal elastomer foams for enhanced vitality dissipation underneath mechanical insult. ACS Appl. Mater. Interfaces 13, 12698–12708 (2021).
Urayama, Ok., Mashita, R., Kobayashi, I. & Takigawa, T. Stretching-induced director rotation in skinny movies of liquid crystal elastomers with homeotropic alignment. Macromolecules 40, 7665–7670 (2007).
Michal, B. T., McKenzie, B. M., Felder, S. E. & Rowan, S. J. Metallo-, thermo-, and photoresponsive form reminiscence and actuating liquid crystalline elastomers. Macromolecules 48, 3239–3246 (2015).
Chen, L. et al. Healable and rearrangeable networks of liquid crystal elastomers enabled by diselenide bonds. Angew. Chem. Int. Ed. 60, 16394–16398 (2021).
Ishige, R., Tagawa, Ok. O. H., Niwano, H., Tokita, M. & Watanabe, J. Elongation conduct of a main-chain smectic liquid crystalline elastomer. Macromolecules 41, 7566–7570 (2008).
He, Q., Wang, Z., Wang, Y., Music, Z. & Cai, S. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS Appl. Mater. Interfaces 12, 35464–35474 (2020).
Clarke, S. M., Terentjev, E. M., Kundler, I. I. & Finkelmann, H. Texture evolution in the course of the polydomain-monodomain transition in nematic elastomers. Macromolecules 31, 4862–4872 (1998).
Komp, A. & Finkelmann, H. A brand new kind of macroscopically oriented smectic-A liquid crystal elastomer. Macromol. Speedy Commun. 28, 55–62 (2007).
Wang, Z. et al. Three-dimensional printing of functionally graded liquid crystal elastomer. Sci. Adv. 6, eabc0034 (2020).
Ortiz, C., Wagner, M., Bhargava, N., Ober, C. Ok. & Kramer, E. J. Deformation of a polydomain, smectic liquid crystalline elastomer. Macromolecules 31, 8531–8539 (1998).
Naciri, J. et al. Nematic elastomer fiber actuator. Macromolecules 36, 8499–8505 (2003).
Liu, L. et al. Aggregation-induced emission luminogen-functionalized liquid crystal elastomer smooth actuators. Macromolecules 51, 4516–4524 (2018).
Liu, L., Liu, M. H., Deng, L. L., Lin, B. P. & Yang, H. Close to-infrared chromophore functionalized smooth actuator with ultrafast photoresponsive velocity and superior mechanical property. J. Am. Chem. Soc. 139, 11333–11336 (2017).
Lu, H. F., Wang, M., Chen, X. M., Lin, B. P. & Yang, H. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property. J. Am. Chem. Soc. 141, 14364–14369 (2019).
Kent, T. A., Ford, M. J., Markvicka, E. J. & Majidi, C. Mushy actuators utilizing liquid crystal elastomers with encapsulated liquid metallic joule heaters. Multifunct. Mater. 3, 025003 (2020).
Liu, J. et al. Shaping and locomotion of sentimental robots utilizing filament actuators created from liquid crystal elastomer–carbon nanotube composites. Adv. Intell. Syst. 2, 1900163 (2020).
Wang, Y., Wang, Z., He, Q., Iyer, P. & Cai, S. Electrically managed smooth actuators with a number of and reprogrammable actuation modes. Adv. Intell. Syst. 2, 1900177 (2020).
Li, C., Liu, Y., Lo, C.-W. & Jiang, H. Reversible white-light actuation of carbon nanotube integrated liquid crystalline elastomer nanocomposites. Mushy Matter 7, 7511–7516 (2011).
Tian, H. et al. Polydopamine-coated main-chain liquid crystal elastomer as optically pushed synthetic muscle. ACS Appl. Mater. Interfaces 10, 8307–8316 (2018).
He, Q. et al. Electrospun liquid crystal elastomer microfiber actuator. Sci. Robotic. 6, eabi9704 (2021).
He, Q. et al. Electrically managed liquid crystal elastomer-based smooth tubular actuator with multimodal actuation. Sci. Adv. 5, eaax5746 (2019).
Li, S. et al. Digital mild processing of liquid crystal elastomers for self-sensing synthetic muscle groups. Sci. Adv. 7, eabg3677 (2021).
Saed, M. O. et al. Excessive pressure actuation liquid crystal elastomers through modulation of mesophase construction. Mushy Matter 13, 7537–7547 (2017).
Kim, H., Boothby, J. M., Ramachandran, S., Lee, C. D. & Ware, T. H. Robust, shape-changing supplies: crystallized liquid crystal elastomers. Macromolecules 50, 4267–4275 (2017).
Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, Ok. Kirigami skins make a easy smooth actuator crawl. Sci. Robotic. 3, eaar7555 (2018).
Zou, J., Lin, Y., Ji, C. & Yang, H. A reconfigurable omnidirectional smooth robotic primarily based on caterpillar locomotion. Mushy Robotic. 5, 164 (2018).
Li, W.-B., Zhang, W.-M., Zou, H.-X., Peng, Z.-Ok. & Meng, G. Multisegment annular dielectric elastomer actuators for smooth robots. Sensible Mater. Struct. 27, 115024 (2018).
Xiao, Y. et al. Anisotropic electroactive elastomer for extremely maneuverable smooth robotics. Nanoscale 12, 7514–7521 (2020).
Wang, C. et al. Mushy ultrathin electronics innervated adaptive totally smooth robots. Adv. Mater. 30, 1706695 (2018).
Rogóz, M., Zeng, H., Xuan, C., Wiersma, D. S. & Wasylczyk, P. Gentle-driven smooth robotic mimics caterpillar locomotion in pure scale. Adv. Choose. Mater. 4, 1689–1694 (2016).
Tang, X., Li, Ok., Liu, Y., Zhou, D. & Zhao, J. A smooth crawling robotic pushed by single twisted and coiled actuator. Sens. Actuator A Phys. 291, 80–86 (2019).
Lu, H. et al. A bioinspired multilegged smooth millirobot that capabilities in each dry and moist situations. Nat. Commun. 9, 3944 (2018).