Nernst, W. Zur kinetik der in lösung befindlichen körper (On the kinetics of our bodies in answer). Zeit Phys. Chem. 2, 613–637 (1888).
Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (On the movement of small particels suspended in liquids at relaxation required by the molecular-kinetic principle of warmth). Ann. Phys. 4, 549–560 (1905).
Plawsky, J. L. in Transport Phenomena Fundamentals 4th edn (eds Heinemann, H. & Speight, J. G.) Ch. 3 (CRC Press, 2020).
Weiss, T. F. Mobile Biophysics: Quantity 1: Transport (MIT Press, 1996).
Kirby, B. J. in Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Units Ch. 11 (Cambridge Univ. Press, 2010).
Faucher, S. et al. Essential information gaps in mass transport by means of single-digit nanopores: a evaluation and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).
Daiguji, H., Yang, P. & Majumdar, A. Ion transport in nanofluidic channels. Nano Lett. 4, 137–142 (2004).
Lee, C. et al. Giant obvious electrical measurement of solid-state nanopores as a result of spatially prolonged floor conduction. Nano Lett. 12, 4037–4044 (2012).
Lin, C.-Y., Combs, C., Su, Y.-S., Yeh, L.-H. & Siwy, Z. S. Rectification of focus polarization in mesopores results in excessive conductance ionic diodes and excessive efficiency osmotic energy. J. Am. Chem. Soc. 141, 3691–3698 (2019).
Dechadilok, P. & Deen, W. M. Hindrance components for diffusion and convection in pores. Ind. Eng. Chem. Res. 45, 6953–6959 (2006).
Renkin, E. M. Filtration, diffusion, and molecular sieving by means of porous cellulose membranes. J. Gen. Physiol. 38, 225–243 (1954).
Cheng, C. et al. Ion transport in advanced layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).
Bason, S., Kaufman, Y. & Freger, V. Evaluation of ion transport in nanofiltration utilizing phenomenological coefficients and structural traits. J. Phys. Chem. B 114, 3510–3517 (2010).
Wu, J., Gerstandt, Ok., Zhang, H., Liu, J. & Hinds, B. J. Electrophoretically induced aqueous move by means of single-walled carbon nanotube membranes. Nat. Nanotechnol. 7, 133–139 (2012).
Choi, W. et al. Diameter-dependent ion transport by means of the inside of remoted single-walled carbon nanotubes. Nat. Commun. 4, 2397 (2013).
Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).
Esfandiar, A. et al. Measurement impact in ion transport by means of angstrom-scale slits. Science 358, 511–513 (2017).
Pang, P., He, J., Park, J. H., Krstić, P. S. & Lindsay, S. Origin of big ionic currents in carbon nanotube channels. ACS Nano 5, 7277–7283 (2011).
Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).
Venema, Ok., Gibrat, R., Grouzis, J.-P. & Grignon, C. Quantitative measurement of cationic fluxes, selectivity and membrane potential utilizing liposomes multilabelled with fluorescent probes. Biochim. Biophys. Acta Biomembr. 1146, 87–96 (1993).
Lokesh, M., Youn, S. Ok. & Park, H. G. Osmotic transport throughout floor functionalized carbon nanotube membrane. Nano Lett. 18, 6679–6685 (2018).
Yao, Y.-C. et al. Robust electroosmotic coupling dominates ion conductance of 1.5 nm diameter carbon nanotube porins. ACS Nano 13, 12851–12859 (2019).
Li, Z. et al. Robust differential monovalent anion selectivity in slender diameter carbon nanotube porins. ACS Nano 14, 6269–6275 (2020).
Haynes, W. M., Lide, D. R. & Bruno, T. J. (eds) CRC Handbook of Chemistry and Physics 97th edn, 75–76 (CRC Press, 2016).
Nightingale, E. Jr Phenomenological principle of ion solvation. Efficient radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959).
Misra, R. P. & Blankschtein, D. Insights on the function of many-body polarization results within the wetting of graphitic surfaces by water. J. Phys. Chem. C 121, 28166–28179 (2017).
Misra, R. P. & Blankschtein, D. Uncovering a common molecular mechanism of salt ion adsorption at strong/water interfaces. Langmuir 37, 722–733 (2021).
Lamoureux, G. & Roux, B. Modeling induced polarization with classical Drude oscillators: principle and molecular dynamics simulation algorithm. J. Chem. Phys. 119, 3025–3039 (2003).
Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction by means of the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).
Corry, B. Designing carbon nanotube membranes for environment friendly water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).
Corry, B. Water and ion transport by means of functionalised carbon nanotubes: implications for desalination expertise. Vitality Environ. Sci. 4, 751–759 (2011).
Mondal, S. & Bagchi, B. Water in carbon nanotubes: pronounced anisotropy in dielectric dispersion and its microscopic origin. J. Phys. Chem. Lett. 10, 6287–6292 (2019).
Loche, P., Ayaz, C., Schlaich, A., Uematsu, Y. & Netz, R. R. Large axial dielectric response in water-filled nanotubes and efficient electrostatic ion–ion interactions from a tensorial dielectric mannequin. J. Phys. Chem. B 123, 10850–10857 (2019).
Secchi, E., Niguès, A., Jubin, L., Siria, A. & Bocquet, L. Scaling habits for ionic transport and its fluctuations in particular person carbon nanotubes. Phys. Rev. Lett. 116, 154501 (2016).
Biesheuvel, P. & Bazant, M. Evaluation of ionic conductance of carbon nanotubes. Phys. Rev. E 94, 050601 (2016).
Chipot, C. & Comer, J. Subdiffusion in membrane permeation of small molecules. Sci. Rep. 6, 35913 (2016).
Metzler, R. & Klafter, J. The random stroll’s information to anomalous diffusion: a fractional dynamics strategy. Phys. Rep. 339, 1–77 (2000).
Taylor, G. I. Disintegration of water drops in an electrical area. Proc. R. Soc. Ser. A 280, 383–397 (1964).
Gao, X., Zhao, T. & Li, Z. Fluid breakup in carbon nanotubes: a proof of ultrafast ion transport. Phys. Fluids 29, 092003 (2017).
Chen, X. & Gross, R. W. Potassium flux by means of gramicidin ion channels is augmented in vesicles comprising plasmenylcholine: correlations between gramicidin conformation and performance in chemically distinct host bilayer matrixes. Biochemistry 34, 7356–7364 (1995).
Andersen, O. S. Ion motion by means of gramicidin A channels. Single-channel measurements at very excessive potentials. Biophys. J. 41, 119–133 (1983).
Hemmler, R., Böse, G., Wagner, R. & Peters, R. Nanopore unitary permeability measured by electrochemical and optical single transporter recording. Biophys. J. 88, 4000–4007 (2005).
Menestrina, G. Ionic channels shaped by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membr. Biol. 90, 177–190 (1986).
Tunuguntla, R. H., Escalada, A., Frolov, V. A. & Noy, A. Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nat. Protoc. 11, 2029–2047 (2016).
Tunuguntla, R. H., Allen, F. I., Kim, Ok., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).
Jezek, P., Mahdi, F. & Garlid, Ok. Reconstitution of the meat coronary heart and rat liver mitochondrial Ok+/H+ (Na+/H+) antiporter. Quantitation of Ok+ transport with the novel fluorescent probe, PBFI. J. Biol. Chem. 265, 10522–10526 (1990).
Wanunu, M. et al. Speedy digital detection of probe-specific microRNAs utilizing skinny nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).
Vanommeslaeghe, Ok. et al. CHARMM basic power area: a power area for drug‐like molecules suitable with the CHARMM all‐atom additive organic power fields. J. Comp. Chem. 31, 671–690 (2010).
Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995).
Dequidt, A., Devemy, J. & Padua, A. A. Thermalized Drude oscillators with the LAMMPS molecular dynamics simulator. J. Chem. Inf. Mannequin 56, 260–268 (2016).
Kučerka, N. et al. Lipid bilayer construction decided by the simultaneous evaluation of neutron and X-ray scattering knowledge. Biophys. J. 95, 2356–2367 (2008).
Grossfield, A. WHAM: The Weighted Histogram Evaluation Methodology Model 2.0.1 (College of Rochester,2021); http://membrane.urmc.rochester.edu/wordpress/?page_id=126
Bonthuis, D. J. et al. Principle and simulations of water move by means of carbon nanotubes: prospects and pitfalls. J. Phys. Cond. Matter 23, 184110 (2011).
Vaitheeswaran, S., Rasaiah, J. C. & Hummer, G. Electrical area and temperature results on water within the slender nonpolar pores of carbon nanotubes. J. Chem. Phys. 121, 7955–7965 (2004).
Shafiei, M., von Domaros, M., Bratko, D. & Luzar, A. Anisotropic construction and dynamics of water below static electrical fields. J. Chem. Phys. 150, 074505 (2019).