A gate-tunable graphene Josephson parametric amplifier

0
8
Adv1


Adv2
  • Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum techniques. Nature 451, 664 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Castellanos-Beltran, M. A. & Lehnert, Okay. W. Broadly tunable parametric amplifier primarily based on a superconducting quantum interference system array resonator. Appl. Phys. Lett. 91, 083509 (2007).

    Article 

    Google Scholar
     

  • Castellanos-Beltran, M. A., Irwin, Okay. D., Hilton, G. C., Vale, L. R. & Lehnert, Okay. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929 (2008).

    Article 

    Google Scholar
     

  • Vijay, R., Slichter, D. H. & Siddiqi, I. Statement of quantum jumps in a superconducting synthetic atom. Phys. Rev. Lett. 106, 110502 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, Okay. W. Nanomechanical movement measured with an imprecision under that at the usual quantum restrict. Nature Nanotech. 4, 820 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Walter, T. et al. Fast high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    Article 

    Google Scholar
     

  • Backes, Okay. M. et al. A quantum enhanced seek for darkish matter axions. Nature 590, 238 (2021).

    Article 
    CAS 

    Google Scholar
     

  • de Lange, G. et al. Realization of microwave quantum circuits utilizing hybrid superconducting-semiconducting nanowire Josephson components. Phys. Rev. Lett. 115, 127002 (2015).

    Article 

    Google Scholar
     

  • Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Casparis, L. et al. Superconducting gatemon qubit primarily based on a proximitized two-dimensional electron gasoline. Nature Nanotech. 13, 915 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mergenthaler, M. et al. Circuit quantum electrodynamics with carbon-nanotube-based superconducting quantum circuits. Phys. Rev. Appl. 15, 064050 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, F. E., Jenkins, M. D., Watanabe, Okay., Taniguchi, T. & Steele, G. A. A ballistic graphene superconducting microwave circuit. Nature Commun. 9, 4069 (2018).

    Article 

    Google Scholar
     

  • Wang, J. I. et al. Coherent management of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nature Nanotech. 14, 120 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sikivie, P. Invisible axion search strategies. Rev. Mod. Phys. 93, 015004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zimmer, H. Parametric amplification of microwaves in superconducting josephson tunnel junctions. Appl. Phys. Lett. 10, 193 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. et al. Brief ballistic Josephson coupling in planar graphene junctions with inhomogeneous service doping. Phys. Rev. Lett. 120, 077701 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nanda, G. et al. Present-phase relation of ballistic graphene josephson junctions. Nano Lett. 17, 3396 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, F. E., Jenkins, M. D., Watanabe, Okay., Taniguchi, T. & Steele, G. A. Probing the current-phase relation of graphene Josephson junctions utilizing microwave measurements. Preprint at https://arxiv.org/abs/2007.09795 (2020).

  • Haller, R. et al. Part-dependent microwave response of a graphene Josephson junction. Phys. Rev. Analysis 4, 013198 (2022) https://doi.org/10.1103/PhysRevResearch.4.013198

  • Yurke, B. & Buks, E. Efficiency of cavity-parametric amplifiers, using Kerr nonlinearites, within the presence of two-photon loss. J. Lightw. Techn. 24, 5054 (2006).

    Article 

    Google Scholar
     

  • Mutus, J. Y. et al. Design and characterization of a lumped factor single-ended superconducting microwave parametric amplifier with on-chip flux bias line. Appl. Phys. Lett. 103, 122602 (2013).

    Article 

    Google Scholar
     

  • Planat, L. et al. Understanding the saturation energy of Josephson parametric amplifiers made out of SQUID arrays. Phys. Rev. Appl. 11, 034014 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Eichler, C. & Wallraff, A. Controlling the dynamic vary of a Josephson parametric amplifier. EPJ Quant. Techn. 1, 2 (2014).

    Article 

    Google Scholar
     

  • Macklin, C. et al. A close to quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).

    Article 

    Google Scholar
     

  • Vissers, M. R. et al. Low-noise kinetic inductance traveling-wave amplifier utilizing three-wave mixing. Appl. Phys. Lett. 108, 012601 (2016).

    Article 

    Google Scholar
     

  • Larsen, T. W. et al. Parity-protected superconductor-semiconductor qubit. Phys. Rev. Lett. 125, 056801 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kokkoniemi, R. et al. Bolometer working on the threshold for circuit quantum electrodynamics. Nature 586, 47 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Antony, A. et al. Miniaturizing transmon qubits utilizing van der Waals supplies. Nano Letters 21, 10122 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. I. et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Supplies 21, 398 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sarkar, J. et al. Quantum noise restricted microwave amplification utilizing a graphene josephson junction. Preprint at https://arxiv.org/abs/2204.02103 (2022).

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Adv3