Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum techniques. Nature 451, 664 (2008).
Castellanos-Beltran, M. A. & Lehnert, Okay. W. Broadly tunable parametric amplifier primarily based on a superconducting quantum interference system array resonator. Appl. Phys. Lett. 91, 083509 (2007).
Castellanos-Beltran, M. A., Irwin, Okay. D., Hilton, G. C., Vale, L. R. & Lehnert, Okay. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929 (2008).
Vijay, R., Slichter, D. H. & Siddiqi, I. Statement of quantum jumps in a superconducting synthetic atom. Phys. Rev. Lett. 106, 110502 (2011).
Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, Okay. W. Nanomechanical movement measured with an imprecision under that at the usual quantum restrict. Nature Nanotech. 4, 820 (2009).
Walter, T. et al. Fast high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).
Backes, Okay. M. et al. A quantum enhanced seek for darkish matter axions. Nature 590, 238 (2021).
de Lange, G. et al. Realization of microwave quantum circuits utilizing hybrid superconducting-semiconducting nanowire Josephson components. Phys. Rev. Lett. 115, 127002 (2015).
Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).
Casparis, L. et al. Superconducting gatemon qubit primarily based on a proximitized two-dimensional electron gasoline. Nature Nanotech. 13, 915 (2018).
Mergenthaler, M. et al. Circuit quantum electrodynamics with carbon-nanotube-based superconducting quantum circuits. Phys. Rev. Appl. 15, 064050 (2021).
Schmidt, F. E., Jenkins, M. D., Watanabe, Okay., Taniguchi, T. & Steele, G. A. A ballistic graphene superconducting microwave circuit. Nature Commun. 9, 4069 (2018).
Wang, J. I. et al. Coherent management of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nature Nanotech. 14, 120 (2019).
Sikivie, P. Invisible axion search strategies. Rev. Mod. Phys. 93, 015004 (2021).
Zimmer, H. Parametric amplification of microwaves in superconducting josephson tunnel junctions. Appl. Phys. Lett. 10, 193 (1967).
Park, J. et al. Brief ballistic Josephson coupling in planar graphene junctions with inhomogeneous service doping. Phys. Rev. Lett. 120, 077701 (2018).
Nanda, G. et al. Present-phase relation of ballistic graphene josephson junctions. Nano Lett. 17, 3396 (2017).
Schmidt, F. E., Jenkins, M. D., Watanabe, Okay., Taniguchi, T. & Steele, G. A. Probing the current-phase relation of graphene Josephson junctions utilizing microwave measurements. Preprint at https://arxiv.org/abs/2007.09795 (2020).
Haller, R. et al. Part-dependent microwave response of a graphene Josephson junction. Phys. Rev. Analysis 4, 013198 (2022) https://doi.org/10.1103/PhysRevResearch.4.013198
Yurke, B. & Buks, E. Efficiency of cavity-parametric amplifiers, using Kerr nonlinearites, within the presence of two-photon loss. J. Lightw. Techn. 24, 5054 (2006).
Mutus, J. Y. et al. Design and characterization of a lumped factor single-ended superconducting microwave parametric amplifier with on-chip flux bias line. Appl. Phys. Lett. 103, 122602 (2013).
Planat, L. et al. Understanding the saturation energy of Josephson parametric amplifiers made out of SQUID arrays. Phys. Rev. Appl. 11, 034014 (2019).
Eichler, C. & Wallraff, A. Controlling the dynamic vary of a Josephson parametric amplifier. EPJ Quant. Techn. 1, 2 (2014).
Macklin, C. et al. A close to quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307 (2015).
Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).
Vissers, M. R. et al. Low-noise kinetic inductance traveling-wave amplifier utilizing three-wave mixing. Appl. Phys. Lett. 108, 012601 (2016).
Larsen, T. W. et al. Parity-protected superconductor-semiconductor qubit. Phys. Rev. Lett. 125, 056801 (2020).
Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42 (2020).
Kokkoniemi, R. et al. Bolometer working on the threshold for circuit quantum electrodynamics. Nature 586, 47 (2020).
Antony, A. et al. Miniaturizing transmon qubits utilizing van der Waals supplies. Nano Letters 21, 10122 (2021).
Wang, J. I. et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Supplies 21, 398 (2022).
Sarkar, J. et al. Quantum noise restricted microwave amplification utilizing a graphene josephson junction. Preprint at https://arxiv.org/abs/2204.02103 (2022).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614 (2013).